A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2019; you can also visit the original URL.
The file type is application/pdf
.
Consensus Clustering-Based Undersampling Approach to Imbalanced Learning
2019
Scientific Programming
Class imbalance is an important problem, encountered in machine learning applications, where one class (named as, the minority class) has extremely small number of instances and the other class (referred as, the majority class) has immense quantity of instances. Imbalanced datasets can be of great importance in several real-world applications, including medical diagnosis, malware detection, anomaly identification, bankruptcy prediction, and spam filtering. In this paper, we present a consensus
doi:10.1155/2019/5901087
fatcat:k2ub4mjelveyvajhdrir4pz724