Distributed rank-1 dictionary learning: Towards fast and scalable solutions for fMRI big data analytics

Milad Makkie, Xiang Li, Tianming Liu, Shannon Quinn, Binbin Lin, Jieping Ye
2016 2016 IEEE International Conference on Big Data (Big Data)  
The use of functional brain imaging for research and diagnosis has benefitted greatly from the recent advancements in neuroimaging technologies, as well as the explosive growth in size and availability of fMRI data. While it has been shown in literature that using multiple and large scale fMRI datasets can improve reproducibility and lead to new discoveries, the computational and informatics systems supporting the analysis and visualization of such fMRI big data are extremely limited and
more » ... under-discussed. We propose to address these shortcomings in this work, based on previous success in using dictionary learning method for functional network decomposition studies on fMRI data. We presented a distributed dictionary learning framework based on rank-1 matrix decomposition with sparseness constraint (D-r1DL framework). The framework was implemented using the Spark distributed computing engine and deployed on three different processing units: an in-house server, in-house high performance clusters, and the Amazon Elastic Compute Cloud (EC2) service. The whole analysis pipeline was integrated with our neuroinformatics system for data management, user input/output, and real-time visualization. Performance and accuracy of D-r1DL on both individual and group-wise fMRI Human Connectome Project (HCP) dataset shows that the proposed framework is highly scalable. The resulting group-wise functional network decompositions are highly accurate, and the fast processing time confirm this claim. In addition, D-r1DL can provide real-time user feedback and results visualization which are vital for large-scale data analysis.
doi:10.1109/bigdata.2016.7841000 dblp:conf/bigdataconf/MakkieLLQLY16 fatcat:zk7qohvpi5ftjakakmfxtj7u2q