Physical Foundations of Cosmology [book]

Viatcheslav Mukhanov
2005 unpublished
Inflationary cosmology has been developed over the last 20 years to remedy serious shortcomings in the standard hot big bang model of the universe.Taking an original approach, this textbook explains the basis of modern cosmology and shows where the theoretical results come from. The book is divided into two parts: the first deals with the homogeneous and isotropic model of the universe, while the second part discusses how initial inhomogeneities can explain the observed structure of the
more » ... ture of the universe. Analytical treatments of traditionally highly numerical topics -such as primordial nucleosynthesis, recombination and cosmic microwave background anisotropy -are provided, and inflation and quantum cosmological perturbation theory are covered in great detail. The reader is brought to the frontiers of current cosmological research by the discussion of more speculative ideas. This is an ideal textbook both for advanced students of physics and astrophysics and for those with a particular interest in theoretical cosmology. Nearly every formula in the book is derived from basic physical principles covered in undergraduate courses. Each chapter includes all necessary background material and no prior knowledge of general relativity and quantum field theory is assumed. Viatcheslav Mukhanov is Professor of Physics and Head of the Astroparticle Physics and Cosmology Eidgenössische Technische Hochschule (ETH) in Zürich, Switzerland, until his appointment at LMU in 1997. His current research interests include cosmic microwave background fluctuations, inflationary models, string cosmology, the cosmological constant problem, dark energy, quantum and classical black holes, and quantum cosmology. He also serves on the editorial boards of leading research journals in these areas. In 1980-81, Professor Mukhanov and G. Chibisov discovered that quantum fluctuations could be responsible for the large-scale structure of the universe. They calculated the spectrum of fluctuations in a model with a quasi-exponential stage of expansion, later known as inflation. The predicted perturbation spectrum is in very good agreement with measurements of the cosmic microwave background fluctuations. Subsequently, Professor Mukhanov developed the quantum theory of cosmological perturbations for calculating perturbations in generic inflationary models. In 1988, he was awarded the Gold Medal of the Academy of Sciences of the USSR for his work on this theory.
doi:10.1017/cbo9780511790553 fatcat:5txsscnmf5hmxdsmktr4kfx5cm