Towards automated symptoms assessment in mental health [article]

Maxim Osipov
2019 arXiv   pre-print
Activity and motion analysis has the potential to be used as a diagnostic tool for mental disorders. However, to-date, little work has been performed in turning stratification measures of activity into useful symptom markers. The research presented in this thesis has focused on the identification of objective activity and behaviour metrics that could be useful for the analysis of mental health symptoms in the above mentioned dimensions. Particular attention is given to the analysis of objective
more » ... differences between disorders, as well as identification of clinical episodes of mania and depression in bipolar patients, and deterioration in borderline personality disorder patients. A principled framework is proposed for mHealth monitoring of psychiatric patients, based on measurable changes in behaviour, represented in physical activity time series, collected via mobile and wearable devices. The framework defines methods for direct computational analysis of symptoms in disorganisation and psychomotor dimensions, as well as measures for indirect assessment of mood, using patterns of physical activity, sleep and circadian rhythms. The approach of computational behaviour analysis, proposed in this thesis, has the potential for early identification of clinical deterioration in ambulatory patients, and allows for the specification of distinct and measurable behavioural phenotypes, thus enabling better understanding and treatment of mental disorders.
arXiv:1908.06013v1 fatcat:7smpoutewvg27p5e3kwprg7xse