Gaussians on Riemannian Manifolds: Applications for Robot Learning and Adaptive Control [article]

Sylvain Calinon
2020 arXiv   pre-print
This article presents an overview of robot learning and adaptive control applications that can benefit from a joint use of Riemannian geometry and probabilistic representations. The roles of Riemannian manifolds, geodesics and parallel transport in robotics are first discussed. Several forms of manifolds already employed in robotics are then presented, by also listing manifolds that have been underexploited but that have potentials in future robot learning applications. A varied range of
more » ... ues employing Gaussian distributions on Riemannian manifolds is then introduced, including clustering, regression, information fusion, planning and control problems. Two examples of applications are presented, involving the control of a prosthetic hand from surface electromyography (sEMG) data, and the teleoperation of a bimanual underwater robot. Further perspectives are finally discussed, with suggestions of promising research directions.
arXiv:1909.05946v4 fatcat:ojaty7ptljdblbrt7p6jwiom3a