A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
A prediction method of silicon content in hot metal of blast furnace
2022
Metalurgija
In blast furnace smelting, the silicon content in hot metal can indirectly reflect the blast furnace temperature and measure the quality of hot metal. For more accurate prediction, according to the reduction reaction, the input parameters affecting the silicon content are selected to form a data set. The Weighted Random Forest (WRF) prediction model and the Scaling Coefficient Particle Swarm Optimization (SCPSO) algorithm are proposed. The prediction method based on SCPSO-WRF has higher
doaj:58104f3685d547e1b4bdcebda187f8d9
fatcat:757mnhtpnnbhlegbterh4xvvui