On the hardness of approximate reasoning

Dan Roth
1996 Artificial Intelligence  
Many AI problems, when formalized, reduce to evaluating the probability that a propositional expression is true. In this paper we show that this problem is computationally intractable even in surprisingly restricted cases and even if we settle for an approximation to this probability. We consider various methods used in approximate reasoning such as computing degree of belief and Bayesian belief networks, as well as reasoning techniques such as constraint satisfaction and knowledge compilation,
more » ... that use approximation to avoid computational difficulties, and reduce them to model-counting problems over a propositional domain. We prove that counting satisfying assignments of propositional languages is intractable even for Horn and monotone formulae, and even when the size of clauses and number of occurrences of the variables are extremely limited. This should be contrasted with the case of deductive reasoning, where Horn theories and theories with binary clauses are distinguished by the existence of linear time satisfiability algorithms. What is even more surprising is that, as we show, even approximating the number of satisfying assignments (i.e., "approximating" approximate reasoning), is intractable for most of these restricted theories. We also identify some restricted classes of propositional formulae for which efficient algorithms for counting satisfying assignments can be given.
doi:10.1016/0004-3702(94)00092-1 fatcat:yt4pdkftfvblbnjyenyikcks5e