Quiet interfaces that help students think

Sharon Oviatt, Alex Arthur, Julia Cohen
2006 Proceedings of the 19th annual ACM symposium on User interface software and technology - UIST '06  
As technical as we have become, modern computing has not permeated many important areas of our lives, including mathematics education which still involves pencil and paper. In the present study, twenty high school geometry students varying in ability from low to high participated in a comparative assessment of math problem solving using existing pencil and paper work practice (PP), and three different interfaces: an Anoto-based digital stylus and paper interface (DP), pen tablet interface (PT),
more » ... and graphical tablet interface (GT). Cognitive Load Theory correctly predicted that as interfaces departed more from familiar work practice (GT > PT > DP), students would experience greater cognitive load such that performance would deteriorate in speed, attentional focus, meta-cognitive control, correctness of problem solutions, and memory. In addition, low-performing students experienced elevated cognitive load, with the more challenging interfaces (GT, PT) disrupting their performance disproportionately more than higher performers. The present results indicate that Cognitive Load Theory provides a coherent and powerful basis for predicting the rank ordering of users' performance by type of interface. In the future, new interfaces for areas like education and mobile computing could benefit from designs that minimize users' load so performance is more adequately supported.
doi:10.1145/1166253.1166284 dblp:conf/uist/OviattAC06 fatcat:3qhnuaxa7vgqpisorwz7hkikfy