Bioactive nanoparticle-based formulations increase survival area of perforator flaps in a rat model

Ioana Lese, David Alexander Graf, Catherine Tsai, Adriano Taddeo, Martin Tobias Matter, Mihai A. Constantinescu, Inge Katrin Herrmann, Radu Olariu
Distal flap necrosis is a frequent complication of perforator flaps. Advances in nanotechnology offer exciting new therapeutic approaches. Anti-inflammatory and neo-angiogenic properties of certain metal oxides within the nanoparticles, including bioglass and ceria, may promote flap survival. Here, we explore the ability of various nanoparticle formulations to increase flap survival in a rat model. Materials and methods A 9 x 3 cm dorsal flap based on the posterior thigh perforator was raised
more » ... orator was raised in 32 Lewis rats. They were divided in 4 groups and treated with different nanoparticle suspensions: I-saline (control), II-Bioglass, III-Bioglass/ceria and IV-Zinc-doped strontium-substituted bioglass/ ceria. On post-operative day 7, planimetry and laser Doppler analysis were performed to assess flap survival and various samples were collected to investigate angiogenesis, inflammation and toxicity. Results All nanoparticle-treated groups showed a larger flap survival area as compared to the control group (69.9%), with groups IV (77,3%) and II (76%) achieving statistical significance. Blood flow measurements by laser Doppler analysis showed higher perfusion in the nanoparticle-treated flaps. Tissue analysis revealed higher number of blood vessels and increased VEGF expression in groups II and III. The cytokines CD31 and MCP-1 were decreased in groups II and IV.
doi:10.3929/ethz-b-000401646 fatcat:6ti5qhswgzfg7bal5wgdmhut6m