Application of an optimization-based curtailment service provider in real-time simulation

Omid Abrishambaf, Pedro Faria, Zita Vale
2018 Energy Informatics  
The use of demand response programs and distributed renewable energy resources are intensively discussed. These concepts play a key role in the distribution network, especially smart grids and microgrids. Nowadays, most of the implemented demand response programs are considered for large-scale resources, which make small and medium resources unable to participate in electricity market negotiations. In order to overcome this barrier, a third-party entity, namely an aggregator, can be considered
more » ... s an intermediate player between the demand side and grid side. For this purpose, curtailment service provider is considered as an aggregator, which aggregates small and medium-scale resources, who do not have adequate capacity of reduction or generation and allow them to participate in wholesale electricity markets as a unique resource. However, before massive implementation of business models, the performance of the curtailment service provider should be adequately surveyed and validated in order to prevent future problems. This paper proposes a real-time simulation model of a curtailment service provider, which employs several real and laboratory hardware equipment considered as hardware-in-the-loop in the real-time simulator. Furthermore, an optimization problem is developed for a curtailment service provider in order to optimally schedule the available resources including several demand response programs and distributed renewable resources, aiming at minimizing its operation costs. The implemented case study considers a distribution network with 20 consumers and prosumers, and 26 renewable-based producers including wind and photovoltaic generation, where the developed model is performed in real-time for 12 min and behaviors of small and medium prosumers and producers is surveyed. The daily increment of electrical energy usage impels the network operator to provide efficient solutions regarding energy resources. Demand Response (DR) programs and Distributed Generation (DG) are two major concepts, which play a key role in this context (Aghaei and Alizadeh 2013).
doi:10.1186/s42162-018-0006-6 fatcat:atfj7lmlsvgslko5dkyw4ac3my