A hybrid-based error detection technique for PLC-based Industrial Control Systems

Navid Rajabpour, Yasser Sedaghat
2015 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA)  
Nowadays, Industrial Control Systems (ICSs) are employed to monitor and control safety-critical industrial processes. A Supervisory Control and Data Acquisition (SCADA) system is an ICS to perform centralized monitoring and also to control field sites in long-distance communication networks. A SCADA is a distributed system composed of several Remote Terminal Units (RTUs) and a Master Terminal Unit (MTU). RTUs interface with field sensors, local control devices, and field actuators, and the MTU
more » ... athers data from RTUs, provides an operator interface to display information, and controls remote sites. RTUs are typically connected to the MTU through a client/server network. Since RTUs operate commonly in a harsh industrial environment, fault tolerance is a key requirement, especially for safety-critical industrial processes. Studies show that a significant number of transient faults caused by a harsh environment lead to control flow errors in the RTU's processors. A control flow checking technique, called PLC-CFC, has been proposed to detect control flow errors in several RTUs in a SCADA system. The proposed technique can be applied to all ICSs which employ microcontrollers, microprocessors, PLCs, or personal computers as their RTUs. The proposed technique has been experimentally evaluated on a real ICS consists of some PLC devices and a main server. For experimental evaluation, 30,000 faults were injected on distributed system and the PLC-CFC technique detected more than 96.76% of the injected faults. The performance and the memory overheads of the technique are about 18.12% and 16.17% on average, respectively.
doi:10.1109/etfa.2015.7301525 dblp:conf/etfa/RajabpourS15 fatcat:un53fbg6ubdwlhow3qb5lsisdi