Computational Neuroscience of Vision

EDMUND T. ROLLS

University of Oxford, Department of Experimental Psychology, Oxford, UK

and

GUSTAVO DECO

Siemens, Munich; and University of Munich, Germany

Contents

Introduction

	1.1	Introduction and overview	1
	1.2	Neurons	2
	1.3	Neurons in a network	2
	1.4	Synaptic modification	4
	1.5	Long-Term Potentiation and Long-Term Depression	7
	1.6	Distributed representations	11
		1.6.1 Definitions	11
		1.6.2 Advantages of different types of coding	12
	1.7	Neuronal network approaches versus connectionism	13
	1.8	Introduction to three neuronal network architectures	14
	1.9	Systems-level analysis of brain function	16
	1.10	The fine structure of the cerebral neocortex	21
		1.10.1 The fine structure and connectivity of the neocortex	21
		1.10.2 Excitatory cells and connections	21
		1.10.3 Inhibitory cells and connections	23
		1.10.4 Quantitative aspects of cortical architecture	25
		1.10.5 Functional pathways through the cortical layers	27
		1.10.6 The scale of lateral excitatory and inhibitory effects,	
		and the concept of modules	29
	1.11	Backprojections in the cortex	30
		1.11.1 Architecture	30
		1.11.2 Learning	31
		1.11.3 Recall	33
		1.11.4 Semantic priming	34
		1.11.5 Attention	34
		1.11.6 Autoassociative storage, and constraint satisfaction	34
2	The	primary visual cortex	36
	2.1	Introduction and overview	36
	2.2	Retina and lateral geniculate nuclei	37
	2.3	Striate cortex: Area V1	43
		2.3.1 Classification of V1 neurons	43
		2.3.2 Organization of the striate cortex	45
		2.3.3 Visual streams within the striate cortex	48

1

	2.4		utational processes that give rise to V1 simple cells	49
			Linsker's method: Information maximization	50
		2.4.2	Olshausen and Field's method: Sparseness maxi-	50
			mization	53
	2.5		omputational role of V1 for form processing	55 55
	2.6	Backp	rojections to the lateral geniculate nucleus	55
3	Extr	astriate	e visual areas	57
	3.1	Introdu	uction	57
	3.2	Visual	pathways in extrastriate cortical areas	57
	3.3	Colour	r processing	61
		3.3.1	Trichromacy theory	61
		3.3.2	Colour opponency, and colour contrast: Opponent	
			cells	61
	3.4	Motion	n and depth processing	65
			The motion pathway	65
		3.4.2	Depth perception	67
4	The	parieta	al cortex	70
	4.1	Introdu	uction	70
	4.2	Spatia	I processing in the parietal cortex	70
		4.2.1	Area LIP	71
		4.2.2	Area VIP	73
		4.2.3	Area MST	74
		4.2.4	Area 7a	74
	4.3	The ne	europsychology of the parietal lobe	75
		4.3.1	Unilateral neglect	75
		4.3.2	Balint's syndrome	77
		4.3.3	Gerstmann's syndrome	79
5	Infe	rior ten	nporal cortical visual areas	81
	5.1	Introdu	uction	81
	5.2	Neuro	nal responses in different areas	81
	5.3	The se	electivity of one population of neurons for faces	83
	5.4		inations of face features	84
	5.5	Distrib	outed encoding of object and face identity	84
			Distributed representations evident in the firing rate	
			distributions	85
		5.5.2	The representation of information in the responses	
			of single neurons to a set of stimuli	90
		5.5.3	The representation of information in the responses	

			of a population of inferior temporal visual cortex neu-	
			rons	94
		5.5.4	Advantages for brain processing of the distributed	
			representation of objects and faces	98
		5.5.5	Should one neuron be as discriminative as the whole	
			organism, in object encoding systems?	103
		5.5.6	Temporal encoding in the spike train of a single neu-	
			ron	105
		5.5.7	,	
			ent cortical neurons	108
			Conclusions on cortical encoding	111
	5.6		ance in the neuronal representation of stimuli	112
			Size and spatial frequency invariance	112
			Translation (shift) invariance	113
			Reduced translation invariance in natural scenes	113
		5.6.4	A view-independent representation of objects and	
		_	faces	115
			identification and face expression systems	118
	5.8		ning in the inferior temporal cortex	120
	5.9		cal processing speed	122
	5.10	Conc	lusions	125
6	Visu	ıal atte	entional mechanisms	126
	6.1	Introd	luction	126
	6.2	The c	classical view	126
		6.2.1	The spotlight metaphor and feature integration the-	
			ory	126
		6.2.2	Computational models of visual attention	129
	6.3	Biase	d competition – single cell studies	132
		6.3.1	Neurophysiology of attention	133
			The role of competition	135
		6.3.3	Evidence of attentional bias	136
		6.3.4	Non-spatial attention	136
			High-resolution buffer hypothesis	139
	6.4		d competition – fMRI	140
		611	Neuroimaging of attention	140
		0.4.1		
		6.4.2		
		6.4.2	tion	141
	6.5	6.4.2		

7.1	Introd	uction	145		
7.2	Pattern association memory				
		Architecture and operation	146		
		The vector interpretation	149		
		Properties	150		
		Prototype extraction, extraction of central tendency,			
		and noise reduction	151		
	7.2.5	Speed	151		
		Local learning rule	152		
		Implications of different types of coding for storage			
		in pattern associators	158		
7.3	Autoa	ssociation memory	159		
		Architecture and operation	160		
		Introduction to the analysis of the operation of au-			
		toassociation networks	161		
	7.3.3	Properties	163		
		Use of autoassociation networks in the brain	170		
7.4		petitive networks, including self-organizing maps	171		
	•	Function	171		
	7.4.2	Architecture and algorithm	171		
		Properties	173		
		Utility of competitive networks in information pro-			
		cessing by the brain	178		
	7.4.5	Guidance of competitive learning	180		
		Topographic map formation	182		
		Radial Basis Function networks	187		
		Further details of the algorithms used in competitive			
		networks	188		
7.5	Conti	nuous attractor networks	192		
	7.5.1	Introduction	192		
	7.5.2	The generic model of a continuous attractor network	195		
		Learning the synaptic strengths between the neu-			
		rons that implement a continuous attractor network	196		
	7.5.4	The capacity of a continuous attractor network	198		
	7.5.5	Continuous attractor models: moving the activity packet			
		of neuronal activity	198		
	7.5.6	Stabilization of the activity packet within the continu-			
		ous attractor network when the agent is stationary	202		
	7.5.7	Continuous attractor networks in two or more dimen-			
		sions	203		

Contents	xiii
----------	------

	7.5.8 Mixed continuous and discrete attractor networks	203
7.6	Network dynamics: the integrate-and-fire approach	204
	7.6.1 From discrete to continuous time	204
	7.6.2 Continuous dynamics with discontinuities	205
	7.6.3 Conductance dynamics for the input current	207
	7.6.4 The speed of processing of one-layer attractor net-	
	works with integrate-and-fire neurons	209
	7.6.5 The speed of processing of a four-layer hierarchical	
	network with integrate-and-fire attractor dynamics in	
	each layer	212
	7.6.6 Spike response model	215
7.7	Network dynamics: introduction to the mean field approach	216
7.8	Mean-field based neurodynamics	218
	7.8.1 Population activity	218
	7.8.2 A basic computational module based on biased com-	
	petition	220
	7.8.3 Multimodular neurodynamical architectures	221
7.9	Interacting attractor networks	224
7.10	0 Error correction networks	228
	7.10.1 Architecture and general description	229
	7.10.2 Generic algorithm (for a one-layer network taught by	
	error correction)	229
	7.10.3 Capability and limitations of single-layer error-correcting	
	networks	230
	7.10.4 Properties	234
7.1	1 Error backpropagation multilayer networks	236
	7.11.1 Introduction	236
	7.11.2 Architecture and algorithm	237
	7.11.3 Properties of multilayer networks trained by error	
	backpropagation	238
7.12	2 Biologically plausible networks	239
7.13	Reinforcement learning	240
7.14	4 Contrastive Hebbian learning: the Boltzmann machine	241
Мо	dels of invariant object recognition	243
8.1	Introduction	243
8.2	Approaches to invariant object recognition	244
	8.2.1 Feature spaces	244
	8.2.2 Structural descriptions and syntactic pattern recog-	
	nition	245

		8.2.3	remplate matching and the alignment approach	241
		8.2.4	Invertible networks that can reconstruct their inputs	248
		8.2.5	Feature hierarchies	24 9
	8.3	Hypot	heses about object recognition mechanisms	253
	8.4	Comp	utational issues in feature hierarchies	257
		8.4.1	The architecture of VisNet	258
		8.4.2	Initial experiments with VisNet	266
		8.4.3	The optimal parameters for the temporal trace used	
			in the learning rule	274
		8.4.4	•	
			relation to error correction and temporal difference	
			learning	275
			The issue of feature binding, and a solution	284
			Operation in a cluttered environment	295
			Learning 3D transforms	301
		8.4.8	Capacity of the architecture, and incorporation of a	
			trace rule into a recurrent architecture with object	007
			attractors	307
		8.4.9	Vision in natural scenes — effects of background	010
	۰		versus attention	313
	8.5	-	nronization and syntactic binding	319
	8.6		er approaches to invariant object recognition	320 321
	8.7	Proce	esses involved in object identification	321
9			al neurodynamics of visual attention – a model	323
	9.1	Introd	luction	323
	9.2	Physi	ological constraints	324
		9.2.1	The dorsal and ventral paths of the visual cortex	324
			The biased competition hypothesis	326
			Neuronal receptive fields	327
	9.3		tecture of the model	328
		9.3.1	Overall architecture of the model	328
			Formal description of the model	33
			Performance measures	336
	9.4		ations of basic experimental findings	336
		9.4.1	Simulations of single-cell experiments	337
			Simulations of fMRI experiments	339
	9.5		et recognition and spatial search	34
		9.5.1	Dynamics of spatial attention and object recognition	343
		9.5.2	Dynamics of object attention and visual search	34

			Contents XV
	9.6	Evaluation of the model	348
		9.6.1 Spatial attention and object attention	348
		9.6.2 Translation-invariant object recognition	350
		9.6.3 Contributions and limitations	351
10	Visu	ıal search: Attentional neurodynamics at work	353
	10.1	Introduction	353
		Simple visual search	354
	10.3	Visual search of hierarchical patterns	358
		10.3.1 The spatial resolution hypothesis	358
		10.3.2 Neurodynamics of the resolution hypothesis	361
		10.3.3 Visual search in the framework of the resolution hy-	
		pothesis	363
	10.4	Visual conjunction search	369
		10.4.1 The binding problem	369
		10.4.2 The time course of conjunction search: experimenta	
		evidence	371
		10.4.3 Extension of the computational cortical architecture	
		10.4.4 Computational results	376
	10.5	Conclusion	381
11	A co	omputational approach to the neuropsychology of visua	1
atte	entio	n	383
	11.1	Introduction	383
	11.2	? The neglect syndrome	383
		11.2.1 A model of visual spatial neglect	384
		11.2.2 Spatial cueing effect on neglect	388
		11.2.3 Extinction and visual search	390
		11.2.4 Effect on neglect of top-down knowledge about ob-	•
		jects	392
		Hierarchical patterns – neuropsychology	398
	11.4	Conjunction search - neuropsychology	400
		11.4.1 Simulations and predictions	400
		11.4.2 Experimental test of the predictions in human sub-	-
		jects	401
	11.5	5 Conclusion	403
12	-	puts of visual processing	404
	12.1	Visual outputs to Short Term Memory systems	406
		12.1.1 Prefrontal cortex short term memory networks, and	
		their relation to temporal and parietal perceptual net	;-

		works	406
	12.1	.2 Computational details of the model of short term	
		memory	409
	12.1	.3 Computational necessity for a separate, prefrontal	
		cortex, short term memory system	412
	12.1	.4 Role of prefrontal cortex short term memory systems	
		in visual search and attention	412
	12.1	.5 Synaptic modification is needed to set up but not to	
		reuse short term memory systems	413
	12.2 Visu	al outputs to Long Term Memory systems in the brain	413
	12.2	.1 Effects of damage to the hippocampus and con-	
		nected structures on object-place and episodic mem-	
		ory	414
	12.2	.2 Neurophysiology of the hippocampus and connected	
		areas	415
	12.2	.3 Hippocampal models	418
	12.2	.4 The perirhinal cortex, recognition memory, and fa-	
		miliarity	421
	12.3 Visu	al stimulus-reward association, emotion, and motiva-	
	tion		424
		3.1 Emotion	425
	12.3	2.2 Reward is not processed in the temporal cortical vi-	
		sual areas	429
	12.3	3.3 Why the reward and punishment associations of stim-	
		uli are not represented early in information process-	
		ing in the primate brain	430
		3.4 Amygdala	434
		3.5 Orbitofrontal cortex	439
		3.6 Effects of mood on memory and visual processing	447
		put to object selection and action systems	448
		ual search	452
		al outputs to behavioral response systems	453
		timodal representations in different brain areas	453
		uo-spatial scratchpad, and change blindness	454
	12.9 Con	scious visual perception	454
13	Principle	es and Conclusions	456
		nsform invariance in the inferior temporal visual cortex	456
		presentation of information in IT	456
		nformation processing is fast	457

	13.4 Continuous neuronal dynamics allows fast network pro-	
	cessing	457
	13.5 Hierarchical feature analysis	457
	13.6 Trace learning rule for invariant representations	459
	13.7 Spatial feature binding by feature combination neurons	460
	13.8 IT provides a representation for later memory networks	461
	13.9 Face expression and object motion	462
	13.10 Attentional mechanisms	462
	13.11 Visual search	464
	13.12 Egocentric vs allocentric representations	464
	13.13 Short term memory as the controller of attention	465
	13.14 Output to object selection and action systems	466
	13.15 'What' versus 'where' processing streams	466
	13.16 Short term memory must be separated from perception	467
	13.17 Backprojections must be weak	468
	13.18 Long-term potentiation and short-term memory	469
	13.19 "Executive control" by the prefrontal cortex	469
	13.20 Reward processing occurs after object identification	470
	13.21 Effects of mood on memory and visual processing	471
	13.22 Visual outputs to Long Term Memory systems	471
	13.23 Episodic memory and the operation of mixed discrete and	
	continuous attractor networks	472
	13.24 Visual outputs to behavioural response systems	472
	13.25 Multimodal representations in different brain areas	472
	13.26 Visuo-spatial scratchpad and change blindness	472
	13.27 Invariant object recognition and attention	473
	13.28 Conscious visual perception	473
	13.29 Attention – future directions	473
	13.30 Integrated approaches to understanding vision	475
	13.31 Apostasis	475
4	Introduction to linear algebra for neural networks	477
	A.1 Vectors	477
	A.1.1 The inner or dot product of two vectors	477
	A.1.2 The length of a vector	478
	A.1.3 Normalizing the length of a vector	479
	A.1.4 The angle between two vectors: the normalized dot	
	product	479
	A.1.5 The outer product of two vectors	480
	A.1.6 Linear and non-linear systems	481
	Tarie and and not mound by come	101

		A.1.7	Linear combinations of vectors, linear independence,	
			and linear separability	482
	A.2	Applic	cation to understanding simple neural networks	484
			Capability and limitations of single-layer networks:	
			linear separability and capacity	484
		A.2.2	Non-linear networks: neurons with non-linear activa-	
			tion functions	487
		A.2.3	Non-linear networks: neurons with non-linear activa-	
			tions	488
В	Info	rmatio	n theory	490
	B.1	Basic	notions	490
		B.1.1	The information conveyed by definite statements	491
		B.1.2	Information conveyed by probabilistic statements	491
		B.1.3	Information sources, information channels, and in-	
			formation measures	492
		B.1.4	The information carried by a neuronal response and	
			its averages	494
		B.1.5	The information conveyed by continuous variables	496
	B.2	The i	nformation carried by neuronal responses	498
		B.2.1	The limited sampling problem	498
		B.2.2	Correction procedures for limited sampling	500
		B.2.3	The information from multiple cells: decoding proce-	
			dures	501
		B.2.4	Information in the correlations between the spikes of	
			different cells	504
	B.3	Inforr	mation theory results	507
		B.3.1	Temporal codes versus rate codes within the spike	
			train of a single neuron	507
		B.3.2	The speed of information transfer from single neu-	
			rons	509
		B.3.3	The information from multiple cells: independent in-	
			formation versus redundancy across cells	512
		B.3.4	The information from multiple cells: the effects of	
			cross-correlations between cells	514
		B.3.5	Conclusions	517
	B.4	Inforr	mation theory terms — a short glossary	518
Re	eferer	nces		520
Index			565	