Transcriptome sequencing of Coccinella septempunctata adults (Coleoptera: Coccinellidae) feeding on artificial diet and Aphis craccivora

Ying Cheng, Junrui Zhi, Fengliang Li, Hua Wang, Yuhang Zhou, Jianxue Jin, Marc Robinson-Rechavi
2020 PLoS ONE  
The insect predator Coccinella septempunctata can effectively control many types of pests, such as aphids, whiteflies, and small lepidopteran larvae. We previously found that C. septempunctata fed an artificial diet showed diminished biological properties(e.g. fecundity, egg hatching rate, survival rate, etc.) compared with those fed natural prey (Aphis craccivora), likely due to different nutritional characteristics of the diet. In this study, we used transcriptome sequencing analysis to
more » ... g analysis to identify nutrition- and metabolism-related genes of C. septempunctata that were differentially expressed depending on diet. The Illumina HiSeq2000 was used to sequence 691,942,058 total clean reads from artificial diet-fed and A. craccivora-fed C. septempunctata libraries, and the clean reads were assembled using Trinity de novo software (Tabel 2). Comparison of transcriptome sequences revealed that expression of 38,315 genes was affected by the artificial diet, and 1,182 of these genes showed a significant change in expression levels (FDR ≤ 0.05,|log2FC|≥1, "FC" stands for "fold change"). These differentially expressed genes (DEGs) were likely associated with the decreased egg laying capacity, hatching rate, longevity, and increased sex ratio (♀:♂) of adult C. septempunctata observed in the group fed the artificial diet. Furthermore, in the most DEGs metabolic pathways for C. septempunctata feeding on the artificial diet accumulated amino acid metabolic pathways, lipid metabolic pathways, and starch and glucose metabolism were down-regulated. We found some differentially expressed genes and metabolic pathways are related to nutrition, from which a more informative feedback for diet formulation was obtained and the artificial diet could be more efficiently optimized.
doi:10.1371/journal.pone.0236249 pmid:32804964 fatcat:5hruubtsybc7pp6w3qkg3f54ae