The general gould type integral with respect to a multisubmeasure

Alina Gavriluţ
<span title="2010-01-01">2010</span> <i title="Walter de Gruyter GmbH"> <a target="_blank" rel="noopener" href="" style="color: black;">Mathematica Slovaca</a> </i> &nbsp;
AbstractIn two earlier papers [GAVRILUŢ, A.: A Gould type integral with respect to a multisubmeasure, Math. Slovaca 58 (2008), 1–20] and [Gavriluţ, A.: On some properties of the Gould type integral with respect to a multisubmeasure, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 52 (2006), 177–194], we defined and studied a Gould type integral for a real valued, bounded function with respect to a multisubmeasure having finite variation. In this paper, we introduce and study the properties of a
more &raquo; ... Gould type integral in the general setting: the function may be unbounded and the variation of the multisubmeasure may be infinite.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="">doi:10.2478/s12175-010-0013-y</a> <a target="_blank" rel="external noopener" href="">fatcat:hpsukusv4jatbfqinyupjelbhu</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href=""> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> Publisher / </button> </a>