A New Big Data Benchmark for OLAP Cube Design Using Data Pre-Aggregation Techniques

Roberto Tardío, Alejandro Maté, Juan Trujillo
2020 Applied Sciences  
In recent years, several new technologies have enabled OLAP processing over Big Data sources. Among these technologies, we highlight those that allow data pre-aggregation because of their demonstrated performance in data querying. This is the case of Apache Kylin, a Hadoop based technology that supports sub-second queries over fact tables with billions of rows combined with ultra high cardinality dimensions. However, taking advantage of data pre-aggregation techniques to designing analytic
more » ... s for Big Data OLAP is not a trivial task. It requires very advanced knowledge of the underlying technologies and user querying patterns. A wrong design of the OLAP cube alters significantly several key performance metrics, including: (i) the analytic capabilities of the cube (time and ability to provide an answer to a query), (ii) size of the OLAP cube, and (iii) time required to build the OLAP cube. Therefore, in this paper we (i) propose a benchmark to aid Big Data OLAP designers to choose the most suitable cube design for their goals, (ii) we identify and describe the main requirements and trade-offs for effectively designing a Big Data OLAP cube taking advantage of data pre-aggregation techniques, and (iii) we validate our benchmark in a case study.
doi:10.3390/app10238674 fatcat:c635wk6bvfaf5ob6vw7e5lywdq