Are solar neutrino oscillations robust?

Omar G Miranda, Maria Amparo Tórtola, José W. F Valle
2006 Journal of High Energy Physics  
The robustness of the large mixing angle (LMA) oscillation (OSC) interpretation of the solar neutrino data is considered in a more general framework where non-standard neutrino interactions (NSI) are present. Such interactions may be regarded as a generic feature of models of neutrino mass. The 766.3 ton-yr data sample of the KamLAND collaboration are included in the analysis, paying attention to the background from the reaction ^13C(\alpha,n) ^16O. Similarly, the latest solar neutrino fluxes
more » ... om the SNO collaboration are included. In addition to the solution which holds in the absence of NSI (LMA-I) there is a 'dark-side' solution (LMA-D) with sin^2 theta_Sol = 0.70, essentially degenerate with the former, and another light-side solution (LMA-0) allowed only at 97% CL. More precise KamLAND reactor measurements will not resolve the ambiguity in the determination of the solar neutrino mixing angle theta_Sol, as they are expected to constrain mainly Delta m^2. We comment on the complementary role of atmospheric, laboratory (e.g. CHARM) and future solar neutrino experiments in lifting the degeneracy between the LMA-I and LMA-D solutions. In particular, we show how the LMA-D solution induced by the simplest NSI between neutrinos and down-type-quarks-only is in conflict with the combination of current atmospheric data and data of the CHARM experiment. We also mention that establishing the issue of robustness of the oscillation picture in the most general case will require further experiments, such as those involving low energy solar neutrinos.
doi:10.1088/1126-6708/2006/10/008 fatcat:2prgndrzrnc2lgqrta3s3q2m4a