Sharing and integration of cognitive neuroscience data: Metric and pattern matching across heterogeneous ERP datasets

Haishan Liu, Gwen Frishkoff, Robert Frank, Dejing Dou
<span title="">2012</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/bby322qx6ndsje4ypr56c7nnly" style="color: black;">Neurocomputing</a> </i> &nbsp;
In the present paper, we use data mining methods to address two challenges in the sharing and integration of data from electrophysiological (ERP) studies of human brain function. The first challenge, ERP metric matching, is to identify correspondences among distinct summary features ("metrics") in ERP datasets from different research labs. The second challenge, ERP pattern matching, is to align the ERP patterns or "components" in these datasets. We address both challenges within a unified
more &raquo; ... ork. The utility of this framework is illustrated in a series of experiments using ERP datasets that are designed to simulate heterogeneities from three sources: (a) different groups of subjects with distinct simulated patterns of brain activity, (b) different measurement methods, i.e, alternative spatial and temporal metrics, and (c) different patterns, reflecting the use of alternative pattern analysis techniques. Unlike real ERP data, the simulated data are derived from known source patterns, providing a gold standard for evaluation of the proposed matching methods. Using this approach, we demonstrate that the proposed method outperforms well-known existing methods, because it utilizes cluster-based structure and thus achieves finer-grained representation of the multidimensional (spatial and temporal) attributes of ERP data.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.neucom.2012.01.028">doi:10.1016/j.neucom.2012.01.028</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/22844185">pmid:22844185</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC3404469/">pmcid:PMC3404469</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/xiaakldkwzbixarh2xmjlzjb5q">fatcat:xiaakldkwzbixarh2xmjlzjb5q</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20140527194722/http://ix.cs.uoregon.edu/~dou/research/papers/neurocomputing12.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/16/7e/167eeda7be54c0d5541b424829f973d9d482a14b.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.neucom.2012.01.028"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404469" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>