Catching and missing finite sets

Martin H. Ellis
<span title="1978-12-01">1978</span> <i title="Canadian Mathematical Society"> <a target="_blank" rel="noopener" href="" style="color: black;">Canadian mathematical bulletin</a> </i> &nbsp;
If T is a 1-1 bimeasurable measure-preserving aperiodic transformation on a probability space X which is a Lebesgue space, then {A:A<=^X and for almost every pair of finite sets F and G there is an neN satisfying F^T'A and GHTM.^} is dense in the cr-algebra of measurable sets.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="">doi:10.4153/cmb-1978-074-9</a> <a target="_blank" rel="external noopener" href="">fatcat:zhzgu5lyundmze6cx2afmfsm34</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href=""> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> Publisher / </button> </a>