Symmetric Subgroup Membership Problems [chapter]

Kristian Gjøsteen
<span title="">2005</span> <i title="Springer Berlin Heidelberg"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/2w3awgokqne6te4nvlofavy5a4" style="color: black;">Lecture Notes in Computer Science</a> </i> &nbsp;
We define and discuss symmetric subgroup membership problems and their properties, including a relation to the Decision Diffie-Hellman problem. We modify the Cramer-Shoup framework, so that we can derive a chosen ciphertext secure cryptosystem in the standard model from symmetric subgroup membership problems. We also discuss how chosen ciphertext secure hybrid cryptosystems based on a symmetric subgroup membership can be constructed in the standard model, giving a very efficient cryptosystem
more &raquo; ... se security relies solely on the symmetric subgroup membership problem.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/978-3-540-30580-4_8">doi:10.1007/978-3-540-30580-4_8</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/ehxsphcoivcdbdkwatse6f75b4">fatcat:ehxsphcoivcdbdkwatse6f75b4</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170829044229/https://www.iacr.org/archive/pkc2005/33860105/33860105.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/af/7a/af7a8566680760c2a7b19dcc76ab0f6f860d6339.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/978-3-540-30580-4_8"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> springer.com </button> </a>