A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
Quantized Adam with Error Feedback
[article]
2021
arXiv
pre-print
In this paper, we present a distributed variant of adaptive stochastic gradient method for training deep neural networks in the parameter-server model. To reduce the communication cost among the workers and server, we incorporate two types of quantization schemes, i.e., gradient quantization and weight quantization, into the proposed distributed Adam. Besides, to reduce the bias introduced by quantization operations, we propose an error-feedback technique to compensate for the quantized
arXiv:2004.14180v2
fatcat:gl3fe5ndtfhghaa72bok37pmx4