Solid-State Nuclear Magnetic Resonance of Exotic Quadrupolar Nuclei as a Direct Probe of Molecular Structure in Organic Ionic Solids

Kevin Burgess, Université D'Ottawa / University Of Ottawa, Université D'Ottawa / University Of Ottawa
In the past decade, the field of NMR spectroscopy has seen the emergence of ever more powerful superconducting magnets, which has opened the door for the observation of many traditionally challenging or non-receptive nuclei. In this dissertation, a variety of ionic solids with organic coordination environments are investigated using quadrupolar solid-state NMR experiments with an ultrahigh-field magnet (21.1 T). Two general research directions are presented including a 79/81Br solid-state NMR
more » ... udy of a series of 6 triphenylphosphonium bromides for which single-crystal X-ray structures are reported herein. A second research direction is also presented wherein alkaline-earth metal (25Mg, 43Ca, and 87Sr) solid-state NMR is used to characterize a systematic series of 16 aryl and alkyl carboxylates. In both studies, the quadrupolar nuclei studied are deemed "exotic" due to their unreceptive nature to NMR spectroscopic analysis including low natural abundances, large quadrupole moments, or low resonance frequencies. A variety of coordination modes to alkaline-earth metals, including N-atom coordination, are characterized herein for the first time using alkaline-earth metal solid-state NMR. In all cases, the electric field gradient (EFG) and chemical shift (CS) tensors are characterized and correlated to structural features such as interatomic distances measured from the crystal structure of the compound under study. In all of the projects undertaken herein, the gauge-including projector-augmented-wave density functional theory (GIPAW DFT) method is used, which allows for the prediction and rationalization of the experimental EFG and CS tensor parameters based on the input crystal structure. In the case of 43Ca solid-state NMR experiments reported in this dissertation, a linear correlation between the calculated and experimental 43Ca quadrupolar coupling constants, CQ, is used as a calibration curve for GIPAW DFT calculations performed on the 18 structural models currently available for the vaterite polymorph of CaCO3. [...]
doi:10.20381/ruor-2726 fatcat:iqiin25btzcitp236fhqnyakza