Historical and projected precipitation extremes over Pare watershed in Arunachal Pradesh, India

W. R. Singh, S. Barman, S. K. Sharma, A. Taggu, A. Bandyopadhyay, A. Bhadra
2021 Applied Water Science  
AbstractThe aim of this paper is to understand the historical and future climate change situation using 15 extreme precipitation indices in the Pare watershed of Arunachal Pradesh, India. Historical period (1981–2019) and future period (2021–2050) precipitation data are used to compute extreme precipitation indices in RClimDex software. The Pare watershed was divided into 13 subwatersheds; however, the results of the study showed no significant spatial variation. This study found that majority
more » ... f the precipitation extreme indices are showing decreasing trends during the historical period and most of them are statistically insignificant at 95% confidence level. Only three indices such as SDII, CWD and MRI are found significant at 0.05 level in the Pare watershed. Though not significant, the annual precipitation amount in the Pare watershed was found decreasing at the rate of 3.3 mm per year during the study period. The trend analysis over the whole watershed indicated significant decreasing trends for CWD and MRI while indicating significant increasing trend for SDII. The representative concentration pathway (RCP) 4.5 and 8.5 projected the extreme precipitation indices in a very similar way. The results of the trend analysis under RCP 8.5 showed significant decreasing trend only at SW10 for the index-moderate rainfall index (MRI). Various cases of RX1DAY and RX5DAY not falling during the months of monsoon were observed in both the historical and future periods. The percentage departures of the monsoon from its annual total had increased in RCP 4.5 and RCP 8.5 scenarios as compared to the historical periods. The results of this climatic investigation suggest that the precipitation regime in the study area had been accompanied and also expected by overall reduction in precipitation amount, milder rainfall events, reduction in monsoon (June–September) rainfall and drier climatic conditions. With the prevalent historical scenario and future projected scenarios of the extreme precipitation indices, the water resource potential in the study area is expected to be greatly reduced, for which the authors seek the attention of various stakeholders in water and allied sectors to come together and discuss on the construction of water conservation structures so that agricultural activities can be expanded and remain sustainable.
doi:10.1007/s13201-021-01382-9 fatcat:pz7zp42jurf6tbdhftizqoafmy