A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit <a rel="external noopener" href="https://arxiv.org/pdf/2203.06043v1.pdf">the original URL</a>. The file type is <code>application/pdf</code>.
Sparse Subspace Clustering for Concept Discovery (SSCCD)
[article]
<span title="2022-03-11">2022</span>
<i >
arXiv
</i>
<span class="release-stage" >pre-print</span>
Concepts are key building blocks of higher level human understanding. Explainable AI (XAI) methods have shown tremendous progress in recent years, however, local attribution methods do not allow to identify coherent model behavior across samples and therefore miss this essential component. In this work, we study concept-based explanations and put forward a new definition of concepts as low-dimensional subspaces of hidden feature layers. We novelly apply sparse subspace clustering to discover
<span class="external-identifiers">
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2203.06043v1">arXiv:2203.06043v1</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/yztxyaoxnnefdl74atrhfibgim">fatcat:yztxyaoxnnefdl74atrhfibgim</a>
</span>
more »
... se concept subspaces. Moving forward, we derive insights from concept subspaces in terms of localized input (concept) maps, show how to quantify concept relevances and lastly, evaluate similarities and transferability between concepts. We empirically demonstrate the soundness of the proposed Sparse Subspace Clustering for Concept Discovery (SSCCD) method for a variety of different image classification tasks. This approach allows for deeper insights into the actual model behavior that would remain hidden from conventional input-level heatmaps.
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20220321033256/https://arxiv.org/pdf/2203.06043v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/a2/e8/a2e88771d10f8bf4d8f4947cc36dc328c2214534.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2203.06043v1" title="arxiv.org access">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
arxiv.org
</button>
</a>