Data Quality Guarantee for Credible Caching Device Selection in Mobile Crowdsensing Systems

Cong Zhao, Shusen Yang, Ping Yan, Qing Yang, Xinyu Yang, Julie McCann
2018 IEEE wireless communications  
Mobile Crowdsensing Systems (MCSs) present a flexible and economical alternative to traditional infrastructure based large-scale sensing through the recruitment of personal mobile devices as data sources. As this becomes a popular sensing approach it will impact the capacity of typical centralized cellular communication infrastructures widely adopted by MCS applications and any costs accrued. Following the trend towards edge processing, Mobile Edge Caching offloads data and services from the
more » ... tem core to reduce service latency and bandwidth occupation. However, in the MCS case the edge device is owned by the general public and are therefore more vulnerable to data or calculation manipulation by the user. We now better understand sensor data and user trustworthiness but have no way to determine which of devices could also be trusted, i.e. act as a credible caching device. In this article, we treat the quality of sensing data reported by each user as an indication of their possibility of providing credible caching services. Specifically, we conduct a comprehensive study of the data quality problem with regards to cache-enabled MCSs, and develop an incentivization method to encourage users to actively provide high quality data. That is, quality-aware behavior evaluation is core to the credible caching device selection process. Results of extensive simulations based on real-world data verify the effectiveness of our design. We also highlight several promising research directions that remain open for further elaborations.
doi:10.1109/mwc.2018.1700299 fatcat:wrtfmm43pbdexf2u6ygl4m2bc4