A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
RMU-Net: A Novel Residual Mobile U-Net Model for Brain Tumor Segmentation from MR Images
2021
Electronics
The most aggressive form of brain tumor is gliomas, which leads to concise life when high grade. The early detection of glioma is important to save the life of patients. MRI is a commonly used approach for brain tumors evaluation. However, the massive amount of data provided by MRI prevents manual segmentation in a reasonable time, restricting the use of accurate quantitative measurements in clinical practice. An automatic and reliable method is required that can segment tumors accurately. To
doi:10.3390/electronics10161962
fatcat:55t3ew6f3za5ljuc363bgbtisi