Gas-liquid mass transfer rates by gas pumping : agitators in oxygen pressure leaching systems

James Dawson-Amoah
1991
Recent developments have indicated high oxygen consumption rates of about 35 g-mole/m³-min during oxidative pressure leaching. At such high oxygen consumption rates the mass transfer of dissolved oxygen at the gas-liquid interface may become rate-limiting. The objective of this study was to obtain an understanding of the gas-liquid mass transfer processes that take place in mechanically agitated pressure leaching systems. The classical reaction between sodium sulphite and dissolved oxygen to
more » ... solved oxygen to form sulphate at atmospheric pressure was used to determine the oxygen mass transfer rates in a 200-liter asymmetrical plastic tank, modelled after the shape of the first compartment of the zinc pressure leach. The effect of this asymmetry was compared with the work of Swiniarski who used a cylindrical symmetrical tank of similar volume. A number of process variables such as the impeller type and size, the impeller speed, the impeller immersion depth and the effect of full baffles that affect mixing were investigated. Also, the volumetric power consumption associated with the mass transfer rates were measured. The results indicate that the asymmetrical tank is at least 3.6 times more efficient in mass transfer than the symmetrical tank. There is a critical speed below which the mass transfer parameter, K[formula omitted], is almost zero and above which K[formula omitted] increases almost linearly with impeller tip speed. A simple energy balance model for bubble creation can predict the critical tip speed. It is shown that K[formula omitted] is enhanced at shallow depths, with a corresponding high mass transfer to energy ratio. The relative effectiveness of impeller types and sizes with regard to the use of power for gas-liquid mass transfer was established. Full baffles degrade the mass transfer rate at increased depth of impeller immersion. The results also add substantial support to the findings provided by DeGraaf [5] that: (i) The dimensionless correlations used in liquid mixing systems do not accurately predict disper [...]
doi:10.14288/1.0302161 fatcat:6bekeqtjtneezhs5kvik4kfmdy