Relations entre l'état hydrique du sol, le potentiel de base et d'autres indicateurs de la contrainte hydrique chez le maïs

F. Tardieu, N. Katerji, O. Bethenod, P. Hamard, P. Quétin, P. Bal
1990 Agronomie  
— Des indicateurs de l'état hydrique du sol (potentiel hydrique dans la zone racinaire et réserve en eau utilisée) ont été mis en relation avec plusieurs indicateurs de l'état hydrique de plantes de maïs pendant la période postfloraison : le potentiel foliaire au lever du jour, le potentiel foliaire pendant la journée, la conductance stomatique et le niveau des composantes du rendement formées pendant la période de mesure. Cette mise en relation a été effectuée pour des plantes en pots, où
more » ... t hydrique du sol et la réserve en eau sont bien définis, et, pendant 3 années, pour des plantes au champ, où les grandeurs caractérisant l'état hydrique du sol sont fortement variables spatialement. Dans les 2 cas, on a suivi l'état hydrique des plantes pour des proportions de la réserve en eau du sol utilisée allant de 15 à 100% de la «réserve utile». Dans l'essai en pots, on a observé le cas classique pour le maïs : le potentiel de base et la conductance stomatique ont décru avec le potentiel hydrique du sol, alors que le potentiel foliaire minimal mesuré pendant la journée a peu varié. Dans l'essai au champ, le potentiel de base et la conductance stomatique sont restés stables sur l'ensemble de la gamme de variation de la réserve en eau du sol, et l'épuisement de la réserve utile estimée du sol n'a pas affecté les composantes du rendement élaborées pendant la période de mesures. Les plantes ne se sont donc pas trouvées en stress hydrique, même lorsque la réserve utile estimée du sol était épuisée. Ceci ne peut être expliqué que par une forte contribution des couches de sol non enracinées à l'alimentation hydrique des plantes. Les ordres de grandeur de flux d'eau à travers la profondeur d'enracinement, calculés à partir des gradients observés de potentiel hydrique et de la conductivité hydraulique calculée du sol, sont compatibles avec cette hypothèse. Ces observations peuvent avoir des incidences importantes sur la gestion de l'irrigation et sur le diagnostic de contraintes hydriques au champ. Zea mays L / potentiel foliaire / potentiel de base / conductance stomatique / composantes du rendement / potentiel du sol / bilan hydrique Summary — Relationship between soil water status, predawn leaf water potential and other indicators of the plant water status in maize. Indicators of soil water status (water potential in the root zone and soil water reserve) have been related to several indicators of the plant water status of maize after silking. The latter were the predawn leaf water potential, the daytime leaf water potential, the stomatal conductance and the measurement of yield components formed during the post-silking period. This relationship was established for plants in pots, where soil water status and water reserve are well defined, and in the field, where the soil water status has a high spatial variability. The field experiment was repeated for 3 years with contrasting climate. Yield components were only measured in the field experiment. Soil water reserve in the field was calculated using measured rooting depths (fig 2) and soil water release curves corresponding to each soil layer. In both cases, water status of plants was measured for water reserves in the soil ranging from 15-100% of the total water reserve (figs 1 and 3). In the pot experiment, we observed the classical case for maize: predawn leaf water potential and stomatal conductance decreased with the soil water potential, but daytime leaf water potential remained almost constant during the experiment (figs 5a and 6a). In the field stomatal conductance and predawn leaf water potential did not vary over the whole range of soil water reserve and depleting the latter in 1989 did not affect the yield components (figs 5b and 6b; tab II). Thus, plants did not experience water stress, even when the calculated soil water reserve had been depleted. This can be explained only by an appreciable contribution of non-rooted layers to water uptake by plants. The order of magnitude of water flux through the rooting depth, calculated at each date using the observed gradient of soil water potential (fig 4) and calculated soil hydraulic conductivity at the rooting depth, are consistent with this hypothesis. These observations may have appreciable consequences for irrigation warning and for diagnosis of water stress in the field. Zea mays L / plant water potential / predawn plant water potential / stomatal conductance / yield component / soil water potential / soil water balance
doi:10.1051/agro:19900802 fatcat:3udfh3ap3nclnb6lztumoqcjru