OBSERVING THE FORMATION OF FLARE-DRIVEN CORONAL RAIN

E. Scullion, L. Rouppe van der Voort, P. Antolin, S. Wedemeyer, G. Vissers, E. P. Kontar, P. T. Gallagher
2016 Astrophysical Journal  
Flare-driven coronal rain can manifest from rapidly cooled plasma condensations near coronal loop-tops in thermally unstable post-flare arcades. We detect 5 phases that characterise the post-flare decay: heating, evaporation, conductive cooling dominance for ~120 s, radiative / enthalpy cooling dominance for ~4700 s and finally catastrophic cooling occurring within 35-124 s leading to rain strands with s periodicity of 55-70 s. We find an excellent agreement between the observations and model
more » ... vations and model predictions of the dominant cooling timescales and the onset of catastrophic cooling. At the rain formation site we detect co-moving, multi-thermal rain clumps that undergo catastrophic cooling from ~1 MK to ~22000 K. During catastrophic cooling the plasma cools at a maximum rate of 22700 K s-1 in multiple loop-top sources. We calculated the density of the EUV plasma from the DEM of the multi-thermal source employing regularised inversion. Assuming a pressure balance, we estimate the density of the chromospheric component of rain to be 9.21x10^11 +-1.76x10^11 cm-3 which is comparable with quiescent coronal rain densities. With up to 8 parallel strands in the EUV loop cross section, we calculate the mass loss rate from the post-flare arcade to be as much as 1.98x10^12 +/-4.95x10^11 g s-1. Finally, we reveal a close proximity between the model predictions of 10^5.8 K and the observed properties between 10^5.9 K and 10^6.2 K, that defines the temperature onset of catastrophic cooling. The close correspondence between the observations and numerical models suggests that indeed acoustic waves (with a sound travel time of 68 s) could play an important role in redistributing energy and sustaining the enthalpy-based radiative cooling.
doi:10.3847/1538-4357/833/2/184 fatcat:ejfzktmz7nfptd5b4he5wu6aay