Scutellarin Mitigates Aβ-Induced Neurotoxicity and Improves Behavior Impairments in AD Mice

Yue-Qin Zeng, Yin-Bo Cui, Juan-Hua Gu, Chen Liang, Xin-Fu Zhou
2018 Molecules  
Alzheimer's disease (AD) is pathologically characterized by excessive accumulation of amyloid-beta (Aβ) within extracellular spaces of the brain. Aggregation of Aβ has been shown to trigger oxidative stress, inflammation, and neurotoxicity resulting in cognitive dysfunction. In this study, we use models of cerebral Aβ amyloidosis to investigate anti-amyloidogenic effects of scutellarin in vitro and in vivo. Our results show that scutellarin, through binding to Aβ42, efficiently inhibits
more » ... ization as well as fibril formation and reduces Aβ oligomer-induced neuronal toxicity in cell line SH-SY5Y. After nine months of treatment in APP/PS1 double-transgenic mice, scutellarin significantly improves behavior, reduces soluble and insoluble Aβ levels in the brain and plasma, decreases Aβ plaque associated gliosis and levels of proinflammatory cytokines TNF-α and IL-6, attenuates neuroinflammation, displays anti-amyloidogenic effects, and highlights the beneficial effects of intervention on development or progression of AD-like neuropathology.
doi:10.3390/molecules23040869 pmid:29642616 fatcat:7t64nh7xijgtxewim5zesqeose