Integrating ontological modelling and Bayesian inference for pattern classification in topographic vector data

Patrick Lüscher, Robert Weibel, Dirk Burghardt
2009 Computers, Environment and Urban Systems  
This paper presents an ontology-driven approach for spatial database enrichment in support of map generalisation. Ontology-driven spatial database enrichment is a promising means to provide better transparency, flexibility and reusability in comparison to purely algorithmic approaches. Geographic concepts manifested in spatial patterns are formalised by means of ontologies that are used to trigger appropriate low level pattern recognition techniques. The paper focuses on inference in the
more » ... e of vagueness, which is common in definitions of spatial phenomena, and on the influence of the complexity of spatial measures on classification accuracy. The concept of the English terraced house serves as an example to demonstrate how geographic concepts can be modelled in an ontology for spatial database enrichment. Owing to their good integration into ontologies, and their ability to deal with vague definitions, supervised Bayesian inference is used for inferring complex concepts. The approach is validated in experiments using large vector datasets representing buildings of four different cities. We compar classification results obtained with the proposed approach to results produced by a more traditional ontology approach. The proposed approach performed considerably better in comparison to the traditional ontology approach. Besides clarifying the benefits of using ontologies in spatial database enrichment, our research demonstrates that Bayesian networks are a suitable method to integrate vague knowledge about conceptualisations in cartography and GIScience. Abstract This paper presents an ontology-driven approach for spatial database enrichment in support of map generalisation. Ontology-driven spatial database enrichment is a promising means to provide better transparency, flexibility and reusability in comparison to purely algorithmic approaches. Geographic concepts manifested in spatial patterns are formalised by means of ontologies that are used to trigger appropriate low level pattern recognition techniques. The paper focuses on inference in the presence of vagueness, which is common in definitions of spatial phenomena, and on the influence of the complexity of spatial measures on classification accuracy. The concept of the English terraced house serves as an example to demonstrate how geographic concepts can be modelled in an ontology for spatial database enrichment. Owing to their good integration into ontologies, and their ability to deal with vague definitions, supervised Bayesian inference is used for inferring complex concepts. The approach is validated in experiments using large vector datasets representing buildings of four different cities. We compare classification results obtained with the proposed approach to results produced by a more traditional ontology approach. The proposed approach performed considerably better in comparison to the traditional ontology approach. Besides clarifying the benefits of using ontologies in spatial database enrichment, our research demonstrates that Bayesian networks are a suitable method to integrate vague knowledge about conceptualisations in cartography and GIScience. -1 -1. What methods are suited to classify instances with respect to formal definitions? -2 -
doi:10.1016/j.compenvurbsys.2009.07.005 fatcat:7dcfwn4f4jgyxnsnxaua7xx2me