A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
Deep Surrogate for Direct Time Fluid Dynamics
[article]
2021
arXiv
pre-print
The ubiquity of fluids in the physical world explains the need to accurately simulate their dynamics for many scientific and engineering applications. Traditionally, well established but resource intensive CFD solvers provide such simulations. The recent years have seen a surge of deep learning surrogate models substituting these solvers to alleviate the simulation process. Some approaches to build data-driven surrogates mimic the solver iterative process. They infer the next state of the fluid
arXiv:2112.10296v1
fatcat:qpnyviwhy5hmvarhyftdjg2rxm