Cayley maps

R. Bruce Richter, Jozef Širáň, Robert Jajcay, Thomas W. Tucker, Mark E. Watkins
<span title="">2005</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="" style="color: black;">Journal of combinatorial theory. Series B (Print)</a> </i> &nbsp;
We present a theory of Cayley maps, i.e., embeddings of Cayley graphs into oriented surfaces having the same cyclic rotation of generators around each vertex. These maps have often been used to encode symmetric embeddings of graphs. We also present an algebraic theory of Cayley maps and we apply the theory to determine exactly which regular or edge-transitive tilings of the sphere or plane are Cayley maps or Cayley graphs. Our main goal, however, is to provide the general theory so as to make it easier for others to study Cayley maps.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="">doi:10.1016/j.jctb.2005.04.007</a> <a target="_blank" rel="external noopener" href="">fatcat:y2pqt5xyljhnhnd6hsaf4diyt4</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href=""> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> </button> </a>