Uniqueness for the signature of a path of bounded variation and the reduced path group

Ben Hambly, Terry Lyons
2010 Annals of Mathematics  
We introduce the notions of tree-like path and tree-like equivalence between paths and prove that the latter is an equivalence relation for paths of finite length. We show that the equivalence classes form a group with some similarity to a free group, and that in each class there is one special tree reduced path. The set of these paths is the Reduced Path Group. It is a continuous analogue to the group of reduced words. The signature of the path is a power series whose coefficients are definite
more » ... cients are definite iterated integrals of the path. We identify the paths with trivial signature as the tree-like paths, and prove that two paths are in tree-like equivalence if and only if they have the same signature. In this way, we extend Chen's theorems on the uniqueness of the sequence of iterated integrals associated with a piecewise regular path to finite length paths and identify the appropriate extended meaning for reparameterisation in the general setting. It is suggestive to think of this result as a non-commutative analogue of the result that integrable functions on the circle are determined, up to Lebesgue null sets, by their Fourier coefficients. As a second theme we give quantitative versions of Chen's theorem in the case of lattice paths and paths with continuous derivative, and as a corollary derive results on the triviality of exponential products in the tensor algebra.
doi:10.4007/annals.2010.171.109 fatcat:k3zl3qfoszgpbdzbdc5x5sqjt4