PHYTOCHEMICAL, ANTI-INFLAMMATORY, ANTIOXIDANT, CYTOTOXIC AND ANTIBACTERIAL STUDY OF CAPPARIS CARTILAGINEA DECNEFROM YEMEN

Bushra Abdulkarim Moharram, Hassan M. Al-mahbashi, Riyadh Saif Ali, Faten Ali Aqlan
2018 International Journal of Pharmacy and Pharmaceutical Sciences  
Objective: To investigate phytochemicals and biological activities of Capparis cartilaginea extracts.Methods: The methanolic extracts of leaves, stem and twigs of C. cartilaginea were screened for their phytochemicals. The essential oil of the leaves was hydrodistilled by a Clevenger apparatus and analyzed by gas chromatography-mass spectrometry (GC-MS). The leaves extract of C. cartilaginea was evaluated for its anti-inflammatory effect, using formalin-induced paw edema. The leaves, stem and
more » ... ig extracts were assessed for their antioxidant activity, using free radical scavenging assay, cytotoxic activity, using 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and antibacterial activity, using the microdilution method.Results: All extracts of C. cartilaginea contained alkaloids, carbohydrates, protein, coumarin, phytosterols, bitter principles, phenols and tannins. The essential oil of the leaves was mainly composed of isopropyl isothiocyanate (69.4%), butane,1-isothiocyanate (26.97%) and isobutyl isothiocyanate (3.26%). The leaves extract at doses of 200 and 400 mg/kg, significantly inhibited paw edema at the 3rd h (49.1%, 54.0%, respectively) and this effect was comparable to that of diclofenac (58.87%). The leaves extract showed the highest antioxidant activity with IC50 value of 91.71 µg/ml. The twigs extract exhibited the highest cytotoxic activity against human lung carcinoma (A549) with IC50 of 57.5 µg/ml. The leaves and stem extracts exhibited antibacterial activity against Staphylococcus aureus with minimum inhibitory concentration (MIC) of 5.0 mg/ml. Conclusion: The leaves extract of C. cartilaginea is a potential source of bioactive compounds that could have a role in anti-inflammation. Twigs extract of the C. cartilaginea possesses a potential cytotoxic effect on human lung cell line.
doi:10.22159/ijpps.2018v10i6.22905 fatcat:ynpgzya7drb3bk7br7qnr5ceny