Multimodal Ultrasonic Imaging for Breast Cancer Detection

Jorge Camacho, Luis Medina, Jorge F. Cruza, José M. Moreno, Carlos Fritsch
2012 Archives of Acoustics  
Ultrasound is used for breast cancer detection as a technique complementary to mammography, the standard screening method. Current practice is based on reflectivity images obtained with conventional instruments by an operator who positions the ultrasonic transducer by hand over the patient's body. It is a non-ionizing radiation, pain-free and not expensive technique that provides a higher contrast than mammography to discriminate among fluid-filled cysts and solid masses, especially for dense
more » ... east tissue. However, results are quite dependent on the operator's skills, images are difficult to reproduce, and state-of-the-art instruments have a limited resolution and contrast to show micro-calcifications and to discriminate between lesions and the surrounding tissue. In spite of their advantages, these factors have precluded the use of ultrasound for screening. This work approaches the ultrasound-based early detection of breast cancer with a different concept. A ring array with many elements to cover 360 • around a hanging breast allows obtaining repeatable and operator-independent coronal slice images. Such an arrangement is well suited for multi-modal imaging that includes reflectivity, compounded, tomography, and phase coherence images for increased specificity in breast cancer detection. Preliminary work carried out with a mechanical emulation of the ring array and a standard breast phantom shows a high resolution and contrast, with an artifact-free capability provided by phase coherence processing. optimization of synthetic aperture ultrasound imaging using the effective aperture approach, Int. J. Information Theory & Applications, 12, 257-265. 9. Nothacker M., Duda V., Hahn M., Warm M., Degenhardt F., Madjar H., Weinbrenner S., Albert U.S. (2009), Early detection of breast cancer: benefits and risks of supplemental breast ultrasound in asymptomatic women with mammographically dense breast tissue, BMC Cancer, 9, 335, 10. Quan Y., Huang L. (2007), Sound-speed tomography using first-arrival transmission ultrasound for a ring array, The objective of this investigation was to test the effectiveness of the Acoustic Emission (AE) measurements in determining the critical stresses during four-point bending of mortar beams. Within the measuring procedure the parameter σcr/σ300 was calculated and analysed. Additionally, the influence of cement replacement by high calcium fly ash (HCFA) on the process of crack healing was discussed. Mortar beams with different content of HCFA and reinforced by steel microfibres were prepared for tests. After curing in standard conditions the beams were subjected to four-point bending test in order to introduce the pre-cracking. Thereafter the beams were cured in the lime water and loaded after 56 and 112 days in the same way as for the first time. Additionally the microstructure of mortars was studied in a stereo optical microscope as well in an electron scanning microscope including the Energy Dispersive X-ray analysis (EDX). The results of microstructural characterization of mortar containing HCFA from lignite combustion are presented. The applied load level slightly exceeded the critical stress, producing intense crack growth processes however did not significant affected the load capacity of the beams. During the consecutive loading the decreasing tendency of σcr/σ300 ratio was noted. The obtained results confirm that the latter parameter can be applied as a measure of the composite degradation level for the elements carrying the repeated loads of amplitude close to the critical stress of the structure and also that the cement replacement with HCFA influences the process of crack healing.
doi:10.2478/v10168-012-0033-4 fatcat:fhhbdferdfaqxcbedyoljfvtxi