A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Squarefree Integers in Arithmetic Progressions to Smooth Moduli
2021
Forum of Mathematics, Sigma
Let $\varepsilon> 0$ be sufficiently small and let $0 < \eta < 1/522$ . We show that if X is large enough in terms of $\varepsilon $ , then for any squarefree integer $q \leq X^{196/261-\varepsilon }$ that is $X^{\eta }$ -smooth one can obtain an asymptotic formula with power-saving error term for the number of squarefree integers in an arithmetic progression $a \pmod {q}$ , with $(a,q) = 1$ . In the case of squarefree, smooth moduli this improves upon previous work of Nunes, in which $196/261
doi:10.1017/fms.2021.67
fatcat:5qrwgtqrdzf3del2wexspdvfkq