Centrosome cohesion is regulated by a balance of kinase and phosphatase activities

P Meraldi, E A Nigg
2001 Journal of Cell Science  
Centrosome cohesion and separation are regulated throughout the cell cycle, but the underlying mechanisms are not well understood. Since overexpression of a protein kinase, Nek2, is able to trigger centrosome splitting (the separation of parental centrioles), we have surveyed a panel of centrosome-associated kinases for their ability to induce a similar phenotype. Cdk2, in association with either cyclin A or E, was as effective as Nek2, but several other kinases tested did not significantly
more » ... rfere with centrosome cohesion. Centrosome splitting could also be triggered by inhibition of phosphatases, and protein phosphatase 1 alpha (PP1 alpha) was identified as a likely physiological antagonist of Nek2. Furthermore, we have revisited the role of the microtubule network in the control of centrosome cohesion. We could confirm that microtubule depolymerization by nocodazole causes centrosome splitting. Surprisingly, however, this drug-induced splitting also required kinase activity and could specifically be suppressed by a dominant-negative mutant of Nek2. These studies highlight the importance of protein phosphorylation in the control of centrosome cohesion, and they point to Nek2 and PP1 alpha as critical regulators of centrosome structure.
pmid:11707526 fatcat:hlkaxobrgneidahthuo46kff6q