SCARLET: Single-Cell Tumor Phylogeny Inference with Copy-Number Constrained Mutation Losses

Gryte Satas, Simone Zaccaria, Geoffrey Mon, Benjamin J. Raphael
2020 Cell Systems  
A small number of somatic mutations drive the development of cancer, but all somatic mutations are markers of the evolutionary history of a tumor. Prominent methods to construct phylogenies from single-cell sequencing data use single-nucleotide variants (SNVs) as markers but fail to adequately account for copy-number aberrations (CNAs), which can overlap SNVs and result in SNV losses. Here, we introduce SCARLET, an algorithm that infers tumor phylogenies from single-cell DNA sequencing data
more » ... e accounting for both CNA-driven loss of SNVs and sequencing errors. SCARLET outperforms existing methods on simulated data, with more accurate inference of the order in which mutations were acquired and the mutations present in individual cells. Using a single-cell dataset from a patient with colorectal cancer, SCARLET constructs a tumor phylogeny that is consistent with the observed CNAs and suggests an alternate origin for the patient's metastases. SCARLET is available at: github.com/raphael-group/scarlet.
doi:10.1016/j.cels.2020.04.001 pmid:32864481 pmcid:PMC7451135 fatcat:kux5tvhagnfone3qte37f24jwm