CERTAIN COMBINATORIC CONVOLUTION SUMS AND THEIR RELATIONS TO BERNOULLI AND EULER POLYNOMIALS

Daeyeoul Kim, Abdelmejid Bayad, Nazli Yildiz Ikikardes
2015 Journal of the Korean Mathematical Society  
In this paper, we give relationship between Bernoulli-Euler polynomials and convolution sums of divisor functions. First, we establish two explicit formulas for certain combinatoric convolution sums of divisor functions derived from Bernoulli and Euler polynomials. Second, as applications, we show five identities concerning the third and fourth-order convolution sums of divisor functions expressed by their divisor functions and linear combination of Bernoulli or Euler polynomials.
doi:10.4134/jkms.2015.52.3.537 fatcat:mjiua2h4qvas7gs7qnv4jcucai