On double stage minimax-shrinkage estimator for generalized Rayleigh model

Abbas Najim Salman, Maymona Ameen
2016 International Journal of Applied Mathematical Research  
<p>This paper is concerned with minimax shrinkage estimator using double stage shrinkage technique for lowering the mean squared error, intended for estimate the shape parameter (a) of Generalized Rayleigh distribution in a region (R) around available prior knowledge (a<sub>0</sub>) about the actual value (a) as initial estimate in case when the scale parameter (l) is known .</p><p>In situation where the experimentations are time consuming or very costly, a double stage procedure can be used to
more » ... reduce the expected sample size needed to obtain the estimator.</p><p>The proposed estimator is shown to have smaller mean squared error for certain choice of the shrinkage weight factor y(<strong>×</strong>) and suitable region R.</p><p>Expressions for Bias, Mean squared error (MSE), Expected sample size [E (n/a, R)], Expected sample size proportion [E(n/a,R)/n], probability for avoiding the second sample and percentage of overall sample saved for the proposed estimator are derived.</p><p>Numerical results and conclusions for the expressions mentioned above were displayed when the consider estimator are testimator of level of significanceD.</p><p>Comparisons with the minimax estimator and with the most recent studies were made to shown the effectiveness of the proposed estimator.</p>
doi:10.14419/ijamr.v5i1.5553 fatcat:pp73mebycvcjjli7epy57asmyu