Chest X-ray image analysis and classification for COVID-19 pneumonia detection using Deep CNN [post]

Terry Gao
2020 unpublished
To speed up the discovery of COVID-19 disease mechanisms by X-ray images, this research developed a new diagnosis platform using a deep convolutional neural network (CNN) that is able to assist radiologists with diagnosis by distinguishing COVID-19 pneumonia from non-COVID-19 pneumonia in patients based on chest X-ray classification and analysis. Such a tool can save time in interpreting chest X-rays and increase the accuracy and thereby enhance our medical capacity for the detection and
more » ... etection and diagnosis of COVID-19. The research idea is that a set of X-ray medical lung images (which include normal, infected by bacteria, infected by virus including COVID-19) are used to train a deep CNN that can distinguish between the noise and the useful information and then uses this training to interpret new images by recognizing patterns that indicate certain diseases such as coronavirus infection in the individual images. The supervised learning method is used as the process of learning from the training dataset and can be thought of as a doctor supervising the learning process. It becomes more accurate as the number of analyzed images grows, and the average accuracy is above 95%. In this way, it imitates the training for a doctor, but the theory is that since it is capable of learning from a far larger set of images than any human, it can have the potential of being more accurate.
doi:10.21203/rs.3.rs-64537/v2 fatcat:37kajdk4ovfwnaqx6v4pryh7q4