Moving the Lab into the Mountains: A Pilot Study of Human Activity Recognition in Unstructured Environments

Brian Russell, Andrew McDaid, William Toscano, Patria Hume
2021 Sensors  
Goal: To develop and validate a field-based data collection and assessment method for human activity recognition in the mountains with variations in terrain and fatigue using a single accelerometer and a deep learning model. Methods: The protocol generated an unsupervised labelled dataset of various long-term field-based activities including run, walk, stand, lay and obstacle climb. Activity was voluntary so transitions could not be determined a priori. Terrain variations included slope,
more » ... g rivers, obstacles and surfaces including road, gravel, clay, mud, long grass and rough track. Fatigue levels were modulated between rested to physical exhaustion. The dataset was used to train a deep learning convolutional neural network (CNN) capable of being deployed on battery powered devices. The human activity recognition results were compared to a lab-based dataset with 1,098,204 samples and six features, uniform smooth surfaces, non-fatigued supervised participants and activity labelling defined by the protocol. Results: The trail run dataset had 3,829,759 samples with five features. The repetitive activities and single instance activities required hyper parameter tuning to reach an overall accuracy 0.978 with a minimum class precision for the one-off activity (climbing gate) of 0.802. Conclusion: The experimental results showed that the CNN deep learning model performed well with terrain and fatigue variations compared to the lab equivalents (accuracy 97.8% vs. 97.7% for trail vs. lab). Significance: To the authors knowledge this study demonstrated the first successful human activity recognition (HAR) in a mountain environment. A robust and repeatable protocol was developed to generate a validated trail running dataset when there were no observers present and activity types changed on a voluntary basis across variations in terrain surface and both cognitive and physical fatigue levels.
doi:10.3390/s21020654 pmid:33477828 fatcat:luybgmaqwbgkbbe2pb4xmwha4m