(2 + 1)D-CAIPIRINHA accelerated MR spectroscopic imaging of the brain at 7T

B. Strasser, M. Považan, G. Hangel, L. Hingerl, M. Chmelik, S. Gruber, S. Trattnig, W. Bogner
2016 Magnetic Resonance in Medicine  
Purpose: To compare a new parallel imaging (PI) method for multislice proton magnetic resonance spectroscopic imaging ( 1 H-MRSI), termed (2 þ 1)D-CAIPIRINHA, with two standard PI methods: 2D-GRAPPA and 2D-CAIPIRINHA at 7 Tesla (T). Methods: (2 þ 1)D-CAIPIRINHA is a combination of 2D-CAIPIRINHA and slice-CAIPIRINHA. Eight healthy volunteers were measured on a 7T MR scanner using a 32-channel head coil. The best undersampling patterns were estimated for all three PI methods. The artifact powers,
more » ... g-factors, Cram er-Rao lower bounds (CRLB), and root mean square errors (RMSE) were compared quantitatively among the three PI methods. Metabolic maps and spectra were compared qualitatively. Results: (2 þ 1)D-CAIPIRINHA allows acceleration in three spatial dimensions in contrast to 2D-GRAPPA and 2D-CAIPIRINHA. Thus, this sequence significantly decreased the RMSE of the metabolic maps by 12.1 and 6.9%, on average, for 4 < R < 11, compared with 2D-GRAPPA and 2D-CAIPIRINHA, respectively. The artifact power was 22.6 and 8.4% lower, and the CRLB were 3.4 and 0.6% lower, respectively. Conclusion: (2 þ 1)-CAIPIRINHA can be implemented for multislice MRSI in the brain, enabling higher accelerations than possible with two-dimensional (2D) parallel imaging methods. An eight-fold acceleration was still feasible in vivo with negligible PI artifacts with lipid decontamination, thus decreasing the measurement time from 120 to 15 min for a 64 Â 64 Â 4 matrix.
doi:10.1002/mrm.26386 pmid:27548836 pmcid:PMC5535010 fatcat:zcyjyhad25aqhczsi3dc535s7m