A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2018; you can also visit <a rel="external noopener" href="https://lirias2repo.kuleuven.be/bitstream/handle/123456789/512405/3993_final.pdf;jsessionid=B6648789FC005FF547F9A817EF82077A?sequence=1">the original URL</a>. The file type is <code>application/pdf</code>.
ISLES Challenge 2015: Automated Model-Based Segmentation of Ischemic Stroke in MR Images
[chapter]
<span title="">2016</span>
<i title="Springer International Publishing">
<a target="_blank" rel="noopener" href="https://fatcat.wiki/container/2w3awgokqne6te4nvlofavy5a4" style="color: black;">Lecture Notes in Computer Science</a>
</i>
We present a novel fully-automated generative ischemic stroke lesion segmentation method that can be applied to individual patient images without need for a training data set. An Expectation Maximizationapproach is used for estimating intensity models for both normal and pathological tissue. The segmentation is represented by a level-set that is iteratively updated to label voxels as either normal or pathological, based on which intensity model explains the voxels' intensity the best. A convex
<span class="external-identifiers">
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/978-3-319-30858-6_21">doi:10.1007/978-3-319-30858-6_21</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/frfomcsq5ndqdgztf4ks4hgwgy">fatcat:frfomcsq5ndqdgztf4ks4hgwgy</a>
</span>
more »
... evel-set formulation is adopted, that eliminates the need for manual initialization of the the level-set. The performance of the method for segmenting the ischemic stroke is summarized by an average Dice score of 0.78 and 0.51 for the SPES and SISS 2015 training set respectively.
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20181104053826/https://lirias2repo.kuleuven.be/bitstream/handle/123456789/512405/3993_final.pdf;jsessionid=B6648789FC005FF547F9A817EF82077A?sequence=1" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/76/f9/76f9cb3a1760ed4fa897655d934e2c70f3369905.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/978-3-319-30858-6_21">
<button class="ui left aligned compact blue labeled icon button serp-button">
<i class="external alternate icon"></i>
springer.com
</button>
</a>