Some Studies on Mode-II Fracture of Light Weight Blended Aggregate Concrete

V. Bhaskar Desai
2013 IOSR Journal of Mechanical and Civil Engineering  
Blended aggregate in concrete and arriving at the structural properties of blended aggregate concrete is a thrust area. Pumice is very light and porous igneous rock that is formed during volcanic eruptions.Cinder is a waste material obtained from steel manufacturing units. Shear strength is a property of major significance for wide range of civil engineering materials and structures. Shear and punching shear failures particularly in deep beams, in corbels and in concrete flat slabs are
more » ... slabs are considered to be more critical and catastrophic than other types of failures. This area has received greater attention in recent years. For investigating shear type of failures, from the literature it is found that double central notched (DCN) specimen geometry proposed by Prakash Desai and V.Bhaskar Desai is supposed the best suited geometry. In this present experimental investigation an attempt is made to study the Mode-II fracture property of light weight blended aggregate cement concrete combining both the pumice and cinder in different proportions, and making use of DCN test specimen geometry . By blending the pumice and cinder in different percentages of 0, 25, 50, 75 and 100 by volumeof concrete, a blended light weight aggregate concrete is prepared. By using this the property such as in plane shear strength is studied. Finally an analysis is carried out regarding Mode-II fracture properties of blended concrete. It is concluded that the Ultimate load in Mode-II is found to decrease continuously with the percentage increase in Pumice aggregate content. It is also observed that the ultimate stress in Mode II is found to increase continuously with percentage increase in cinder aggregate content.
doi:10.9790/1684-0731524 fatcat:kabm435v7fhrvey67drybjqt6a