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 Abstract Current Monte Carlo pricing engines may face computational challenge for the 
Greeks, because of not only their time consumption but also their poor convergence when using 
a finite difference estimate with a brute force perturbation. The same story may apply to 
conditional expectation. In this short paper, following Fournié et al. (1999), we explain how to 
tackle this issue using Malliavin calculus to smoothen the payoff to estimate. We discuss the 
relationship with the likelihood ration method of Broadie and Glasserman (1996). We show on 
numerical results the efficiency of this method and discuss when it is appropriate or not to use 
it. We see how to apply this method to the Heston model. 

 

1. Introduction 
The growing emphasis on risk management issues as well as the development of more and more 
complicated financial products have urged to develop efficient techniques for the computation of price 
sensitivities with respect to model parameters. Moreover, the computation is not only done as the trader 
or book(s) level but also at the firm level, especially for the global computation of VAR and credit charge 
valuation, leading to raising concern about computational time. 
 
In practice, generic Monte Carlo pricing engines may face computational challenge for the Greeks of 
discontinuous payoffs options, because of not only their time consumption but also their poor 
convergence when using a finite difference estimate with a brute force perturbation. In addition to the 
standard error on the numerical computation of the expectation, the finite difference Monte Carlo method 
contains another error on the approximation of the derivative function by means of its finite difference. 
This may give some hard time to the generic engine. The same story applies to conditional expectations 
where many paths might not be relevant. 
 
In this paper, we discuss various methods to get fast convergence and show how these methods can apply 
to a generic Monte Carlo pricing engines as opposed to particular methods that would only spice up 
certain types of payoff but may not apply in a general framework.  
 
Mainly, the particular subjects of importance this article addresses are: 
• a brief introduction to the Malliavin calculus method to get likelihood ratio weights as a generic 
technique for the calculation of Greeks. 
• the likelihood ratios for Delta and Gamma in the Heston stochastic volatility model. 
• classification and guidelines as to when likelihood ratio methods provide the most benefit. 
• The localisation of the likelihood ratio method, i.e. the confinement of this method to its domain of 
efficiency, and the gradual phasing over to finite-differencing in the domain of smooth dependence of the 
payoff on the parameter whose sensitivity is being computed. 
• an introduction to the use of the stochastic calculus of variations for the computation of unusual 
conditional expectations such as the expected realised volatility conditional on the terminal spot value 
attaining a certain level. 
 
In the appendix section, we give an introduction to the Malliavin calculus for reader non familiar with 
Malliavin calculus. 
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London EC4A 2BB, UK. E-mail: Eric.Benhamou@gs.com. The views herein are the authors' ones and do 
not necessarily reflect those of Goldman Sachs. 
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2. Fast Greeks Computation 

Introduction to Malliavin weights 
We first see how to have smart Monte Carlo that compute fast Greeks. We will always assume that the 
functions are smooth enough to be able to perform the different computation referring to Benhamou 
(2000a) or Fournié et al. (2001) for the technical assumptions required (mainly uniform ellipticity of the 
volatility operator). When using finite difference approximation for the Greeks, bumping the price and 
taking the sensitivity, one makes two errors: one on the numerical computation of the expectation via the 
Monte Carlo as for any simulations, and another one on the approximation of the derivative function by 
means of its finite difference. As of the gamma, this leads for example to 
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for very discontinuous payoff like for binary, range accrual, barrier and other type of digital options for 
example. To overcome this inefficiency, Broadie and Glasserman (96) suggested using the likelihood 
ratio method. If we are interested in the sensitivity of the option price with respect to some parameter θ , 
and if we know explicitly the density function of the underlying variable and can express it in terms of the 
parameterθ  by ( )θ,xp , we can compute the Greek by: 
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The interest of this approach was to come up with an efficient way of avoiding the differentiation of the 
payoff function. In fact, rewriting it more formally, the Greeks can be computed as the expectation of the 
original payoff times a weight: 

( )[ ]weightXfEGreek T=     (2.2). 
However, this method was quite restrictive since one needs to know explicitly the density function. This 
is precisely where M. calculus could provide a solution. In an inspiring article, Fournié et al. (1999) 
proved that any Greek could be expressed as an expectation of the payoff times a weight. They show that 
this weight could be expressed in terms of the Malliavin derivative (in the following M. derivative), 
without knowing explicitly the density function. Fournié et al. (2001) examined the different possible 
weights, mentioning that they exist an infinity of weighting function and proved that the weight of 
minimal total variance is precisely the one given by the likelihood ratio method. Benhamou (2000b) 
(2000c) introduced the weighting function generator and showed that any weight could also be expressed 
as the Skorohod integral of the weighting function generator. 

We will denote in the following by TX  the underlying, TT X
X

Y
0∂

∂=  its first variation process 

(derivatives of TX  with respect to its initial condition 0X ) and by ( ).∂  the Skorohod integral2. We 
want to take the derivative of the price with respect to the underlying initial condition: 
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  (2.3). 

Equation (2.3) says on one hand that the delta can be expressed in terms of the first variation process.  
 
If the delta can be written as the expectation of the payoff function times a weight (expressed as a 
Skorohod integral ( )u∂ ), we should have on the other hand: 

 
2 See the appendix for an introduction to Malliavin calculus. Since the Skorohod integral coincides with 
the Ito integral for adapted processes, i.e. for most of the applications in finance, it may be a good idea for 
readers not familiar with this concept to read Skorohod integral as Ito integral in the first place. Readers, 
especially those who are discovering M. calculus for the first time, should also notice that the Skorohod 
integral denoted by ∂  should note be confused with a partial derivatives. The notation of Skorohod 
integral by ∂ is pretty standard in the literature on M. calculus and this is why we keep to this notation. 
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where we have successfully used the integration by part formula (A.3), the chain rule (A.2) and the 
expression of the M. derivative with respect to its first variation process (A.6).  
 
Expressions (2.3) and (2.4) are equal if and only if 
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equivalent to the necessary and sufficient condition: 
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where [ ]TXE |.  denotes the conditional expectation with respect to TX . A specific solution is given 

by: ( )∫
−= udsYXs ss
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Note that this solution is not unique. There exists an infinity of solutions that satisfies the condition (2.5).  
However, the (2.6) solution is in most cases easy to compute and it can be shown in the case of 
homogeneous models (like the Black Scholes and Heston) that it is the optimal solution in the sense of 
that it is the solution with the smallest variance (Benhamou (200c)). Note also that the solution (2.6) 
satisfies  

( ) { }∫ <
−= udsYYXsY TsstsT 1, 1σ  

An elegant way of computing the gamma uses the fact that the gamma is the delta of the delta: 
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given above. But the problem is very similar to the computation of the delta with the slight difference that 
the function ( )uXf T ∂)(  is now a function of both TX  and 0X . The derivatives with respect to 0X  is 

therefore equal to the sum of the compounded derivation with respect to TX  and 0X , and the 

derivatives function with respect to 0X : 
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The first expectation to compute is very similar to the problem of the delta and leads to similar result: 
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simple expression of the M. weighting function: 
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Finally, we can interchange the partial derivation with respect to 0X  and the Skorohod integration to get 
an expression of the gamma M. weighting function. We provide in table 1 a summary of the results 
proved for the delta and gamma of European option. Extensions to other payoff type can be found in 
Fournié et al (1999) and Benhamou (2000a) (Asian options) and in Gobet and Kohatsu Higa (2001) 
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(barrier and lookback options). The definition of other Greeks, in particular the vega for stochastic 
volatility models, is very specific to the model. This is why we limit our study in this paper to the delta 
and gamma. Model dependent Greeks (like correlation, interest rate and volatility sensitivity) are not 
more difficult to compute but of less relevance when doing a generic Monte Carlo as the function have to 
be systematically overloaded by model base function. In C++ terms, this means that these function are 
class dependent and needs to be virtual. 
 
Greek Weight 
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Table 1: European Weight for a general diffusion. 
 
 
The proof about the gamma is given in the appendix section has it involves  
 
 
Note that these relationships are very general and only assume that the underlying is modeled by a jump 
diffusion model with the jump component independent from the Brownian motion. 

( ) ( ) ( ) ttttt dJtdWXtdtXtbdXX λσ ++= ,,:    (2.9). 
The jump part can be of course null, leading to standard SDE, and the volatility can be either 
deterministic or stochastic. It is then easy to apply this to specific model (table 2), using the fact that: 
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Let us remind that the Heston model describes the underlying by assuming a square root process for the 
stochastic volatility  

( ) 2221 , ttttttttt dWvdtddWXdtrXdX σσθλσσ +−=+=  (2.11). 

with [ ]21
tt dWdWEdt =ρ     (2.12). 

The conditions of table 1 can be applied to many models. We have given in table 2 the explicit form of 
the weights for the Black Scholes and Heston model. 
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Table 2: European Weight for the Black Scholes and Heston model. 

 
Note that the weights for both Delta and Gamma in the Heston model require the computation of a 
stochastic volatility path integral. This can not be done exactly easily for any one path, as we assume a 
non zero correlation between the underlying asset and the stochastic volatility. A suitable approximation 
is to use an Euler discretization with small time steps in order to make this method viable in practice. 
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Characteristics of Malliavin weights 
Let us now summarise some important results about Malliavin weights (keeping in mind for the design of 
a general Monte Carlo engine)3: 
♦  All Greeks can be written as the expected value of the payoff times a weight function. The weight 

functions are independent from the payoff function. This has two implications. 
� First, the Malliavin method will comparatively (to finite difference) increased its efficiency for 

discontinuous payoff options. As a rule of thumb, the Malliavin method is appropriate for 
options for which the mean-square convergence of a shifted option ( )ε+xP  to the normal one 

( )xP  is linear in ε . This is the case of any option with a payoff expressed as a probability that 
a certain event occurs conditionally to the underlying level at a certain time. This is in particular 
the case of any binary option, option that pays a certain amount if the underlying is above 
(respectively below in the put case) a certain barrier or corridor option, option that pays a fixed 
amount if the underlying at maturity is within a certain range. For a general pricing engine, using 
certain (numerical) criteria of smoothness, we shall be able to branch on the appropriate method. 
Because it is in a sense independent from the payoff function, the general implementation is 
simpler that the one of variance reduction technique that only apply to very specific payoff (like 
the use of control variate). 

� Second, no extra computation is required for other payoff functions as long as the payoff is a 
function of the same points of the Brownian trajectory. This can be cached in memory to make it 
efficient. 

♦  There is an infinity of solutions for the generator function. Intuitively, this infinity of solutions comes 
for the fact that one could always add unbiased noise to any simulation. This will increase the 
variance of the running average, and thus slow down convergence, but it will not taint the 
convergence level.  

♦  The optimal weighting function is the one that is measurable with respect to the payoff variables. 
This means in practice that the optimal weight functions will be expressed with the same points of 
the Brownian motion trajectory as the option payoff, therefore requiring no extra points computation 
and adding no extra noise.  

♦  The weighting function smoothens the function to simulate (as the payoff function does not require to 
be numerically differentiated) but introduces some extra noise. It smoothens twice the payoff 
function in the case of the gamma as it reduces a second order differentiation to no differentiation, 
leading to high efficiency for the simulation of the gamma (see figure1 for the comparative efficiency 
of the Malliavin method in the case of the gamma of a corridor option). It introduces a lot of noise in 
the simulation as the weighting function explodes for small maturities, imposing some criteria for 
critical maturities. 

 
♦  For homogeneous models (defined as a model that satisfies property of scaling on the underlying: an 

underlying defined as k times another underlying should have its diffusion dynamic proportional by a 
factor of k to the diffusion of the last one), like Black Scholes or Heston, we can derive some 
proportionality rules (see for example Reiss and Wystup (2001)). In particular, there exists some 
relationship between the vega and the gamma in the Black Scholes model. This has two implications: 
the simulation of gamma and vega can be done at once and the performance of the vega 
computations is very similar to the one of the gamma. This can also be understood from the meaning 
of the vega. The vega in the case of Black Scholes is a compound differentiation. The smoothing 
introduced by Malliavin method is therefore twice for the vega. Using the homogeneity property of 
the Greeks makes sure that their computation is consistent and non arbitrageable. 

 
♦  The Malliavin method leads to weighting functions that are roughly (polynomial) functions of the 

Brownian motion. The variance of the weighting function increases for high values of the Brownian 
motion. This implies that if the payoff function is very small for high value of the Brownian motion, 
the variance is going to be low. This indicates that Malliavin formulae are more efficient for put than 
call options. Two remarks should be made. First, it is more appropriate to use the put-call parity and 
therefore to calculate Greeks only for a put4, second, one should use a localization of the Malliavin 

 
3 The whole paper could apply to Monte Carlo simulation already improved by importance sampling and 
control variate techniques. However, since the goal of the paper is to describe Malliavin calculus 
techniques, we only focus on this issue. Efficient industrial Monte Carlo engines have therefore to both 
use M. calculus techniques and other standard variance reduction thechniques. 
4 It is worth noting that a control variate with a control equal to the forward contract cancels the 
difference between call and put. 
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weight only at the discontinuity of the payoff and elsewhere avoid introducing extra noise with the 
Malliavin weight. 
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Figure 1: Efficiency of the Malliavin weighted scheme for the computation of the gamma of a Corridor 
option. A corridor option is defined as an option that pays 1 if the underlying at maturity is within the 
range [ minS , maxS ]. The parameters of this option are: 0S =100, r=5%, σ  =15%, T=1year, minS =95, 

maxS  =105 
 
In order to illustrate these remarks, we first show two simulations done for the gamma of a European 
corridor and call option in a Black Scholes model. Figure 1 is a school case of an appropriate use of 
Malliavin method. It shows the gamma of a corridor option defined as an option to pay 1 if the underlying 
at maturity is between minS  and maxS . The payoff of a corridor option has two discontinuities, the mean 
square convergence of the bumped price is only linear in ε and the Malliavin method smoothens twice 
the Greek to simulate in the case of the gamma. Figure 2 is an example of inappropriate use of Malliavin 
method. The mean square convergence of the bumped price is quadratic, the payoff is not discontinuous, 
and it is only its derivative function that has one discontinuity at the strike. The Malliavin method 
introduces extra noise in the simulation with the weight to simulate. The call put parity has not been used, 
therefore creating high variance for high values of the Brownian motion. 
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Figure 2: Efficiency of the Malliavin weighted scheme for the computation of the delta of a call option. 

The parameters are similar to the corridor option with a strike of 100. 
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Localisation of Malliavin weights 
What we have shown so far is that any Greeks could be written as ( )[ ]weightXfEGreek T= . This 
formula holds for any payoff. This formula will help to smoothen the function to simulate (as the payoff 
function does not require to be numerically differentiated) but the weight will introduce some extra noise.  
This extra noise may spoil the increase of accuracy due to the non-differentiation and the simulation may 
end up being very inefficient. 
A solution is to mix the Greeks as calculated from a Malliavin or likelihood ratio method, and from finite 
differencing, i.e. perturbation. The idea to decompose a payoff into a linear combination of continuous 
functions and discontinuous functions, and to use finite-differencing on the former but likelihood ratios 
on the latter. In a sense, we are limiting this extra noise by “localising” the integration by parts. Let us 
explain by  a simple example. If the payoff function has some discontinuity at a strike K, we can rewrite it 
as  

( ) ( ) ( ) ( )( ) ( )KXfXXKXfKXf TTTTT ,1,, φφ −+=    (2.17), 

where ( )tXφ  is a regular localisation function (say Lipschitz) that has its support in [ ]αα +− KK , . 
We can now proceed to the integration by parts and come up with a formula of the type 

( ) ( )[ ] ( ) ( )( )[ ]TTTT XKXfE
x

weightXXfEGreek φφ −
∂
∂+= 1,   (2.18), 

where the second part can be computed via a finite difference of Monte Carlo prices that introduces no 
extra noise or even better, via an explicit differentiation of the payoff. Let us also mention that taking a 
smoother function that “approaches” in a sense the payoff function can also do the localisation formula. If 
the payoff is very discontinuous, we can always find a function that is smoother and is a good 
approximation of the payoff. In the case of a digital option, a smooth approximation ( )TXαφ could be a 

function that is piecewise linear, equal to 0 for. α−≤ KX T and 1 for α+≥ KX T  and linear in  

between. The payoff of an up digital { }KXT ≥1 can be rewritten in terms of the smooth 

function ( ) ( ) ( ) ( )TaTTT XXfXXf φφα −+= . In this expression, only the second terms 

( ) ( )TaT XXf φ−  is now discontinuous and will require a smoothen expression expressed in terms of 
the Malliavin weight. Obviously, this can be repeated many times and we can for instance express our 
discontinuous function in terms of smooth polynomial approximation functions. We shall not pursue here 
in that direction even if we believe that the efficient approximation of the discontinuous function will be 
an interesting area of research in the coming years. 

3. Conditional expectations and anticipative Monte Carlo 
In many cases, practioners may want to know what the smile looks like, i.e. the implied volatility profile 
consistent with plain vanilla option prices. In particular, practitioners are very interested in having an 
overall idea of the forward smile, the smile generated between two dates in the future. And it has been 
argued that looking at the expected realized volatility condition to a certain terminal spot value may 
provide a good proxy for the smile of plain vanilla options struck at that terminal spot value. However, 
when using Monte Carlo methods, it is well known that conditional expectations offer the computational 
challenge to require a very high number of paths since “almost all” paths may miss the target event 
involved in the conditional expectations. 

Malliavin weights 
We can approach the problem more generally and tackle the issue of conditional expectation. The 
important result given by the Malliavin calculus is the transformation of conditional expectation in non-
conditional ones. 
 
In fact, at least when written formally, this problem is very similar to the one above (the computation of 
the Greeks). A conditional expectation can be formally represented as the ratio of two conditional 
expectations. We will here follow the presentation of Fournié et al. (2001). Let us assume that the 
condition is expressed in terms of a constraint of the type ( ) 0=TXG , of probability 

( )( )[ ]00 =TXGE δ  where 0δ  represents the Dirac function in zero. We have the symbolic 
calculation 
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Nevertheless, of course, the Dirac function is the derivative function of the Heavyside 
function ( ) { } kxH x += ≥01 , and using similar computation as in section 2, we can immediately see that 
we can integrate this by parts. Let us assume that there exists a weight expressed as a Skorohod integral 

( )u∂  so that we have 

( ) ( )( )[ ] ( ) ( )( ) ( )[ ]uXGHXFEXGXFE TTTT ∂=0δ    (3.2). 
Using successively the integration by parts formula (A.3) and the rule for the M. derivatives of a product 
(A.8) and the chain rule (A.2), we get 

( ) ( )( ) ( )[ ] ( ) ( )( )( )[ ]∫=∂ dtuXGHXFDEuXGHXFE tTTtTT         (3.3) 

( ) ( )( ) ( )[ ] ( ) ( )( )[ ] ( ) ( )( ) ( )[ ]∫∫ ∂+=∂ dtuXGDXGXFEdtuXGHXDXFEuXGHXFE tTtTTtTTtTTT 0'
(3.4). 

If we want this to be true for any payoff function, we see that in fact the equation (3.2) cannot hold 
directly. In fact, we can rather remove the first term of the integration by part and impose the second term 
to be equal to ( ) ( )( )[ ]TT XGXFE 0δ . A sufficient condition is 

( )∫ =1dtuXGD tTt      (3.5). 

We then have the following very important way of computing conditional expectation. If we can find a 
weighting function generator u  that satisfies the condition (3.5), we have immediately the obvious result 

( ) ( )[ ]
( ) ( )[ ] ( ) ( ) ( )[ ]{ }

( ) ( )( )[ ]uXGHE

dtuXDXGHXFuXGHXFE
XGXFE

T

tTtTTTT
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Moreover, if we can find an orthogonal weight satisfying both (3.5) and the following orthogonality 

condition              ( )[ ] 0=∫ dtuXFDE tTt        (3.7), 

we then have that the conditional expectation is even simpler and equal to 

( ) ( )[ ] ( ) ( )[ ] ( ){ }
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T

TT
TT ∂

∂
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Obviously, imposing the two conditions (3.5) and (3.7) may impose some restrictions on the two 
stochastic variables GF ,  and may not hold for any function GF , . However, before embarking into a 
numerical example, we will see the explicit expression of the weight when we know the density function. 
This follows the same line as the comparison of the likelihood ratio method and the M. weights for the 
Greeks.  

Weights for explicit densities 
Interestingly, when we know the density function, we can express explicitly the weight with respect to the 
density. In fact, there is two ways of doing it: 
♦  If the function ( )TXF  is smooth, we may want to use it and shift the derivation operator on this 

function to inherit a formula with some smoothness. This integration by part is formally equal to 

( ) ( )( )[ ] ( ) ( )( ) ( ) ( ) ( )( ) ( )( )∫∫ ∂
∂−== dxxGHxpxF
x

dxxpxGxFXGXFE TT 00 δδ      (3.9) 

( ) ( )( )[ ] ( ) ( )[ ] ( )( ) ( ) ( ) ( ) ( )( )[ ]∫ =








∂
∂−= πδ TTTT XGHXFEdxxpxFxGHxFxp
x

XGXFE ln0

(3.10), 

 with the weight    ( ) ( )[ ]TT XFXp
x

ln
∂
∂−=π      (3.11). 

♦  If the function ( )TXF  is not smooth at all but independent of the function ( )TXG  we may want to 
split the expression in independent terms. 

( ) ( )( )[ ] ( ) ( ) ( ) ( ) ( )( ) ( )∫∫ ∂
∂−== dxyxp
y

xGHxFdxyxpyxFXGXFE TT ,,00 δδ    (3.12) 
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( ) ( )( )[ ] ( ) ( )( ) ( ) ( ) ( ) ( )( )[ ]πδ TTTT XGHXFEdxyxpyxqxGHxFXGXFE =−= ∫ ,,0    (3.13) 

with the weight    ( )TTt YXp
y

,ln
∂
∂−=π        (3.14) 

Equation (3.14) shows again the strong similarity between likelihood ratio method and the use of 
Malliavin calculus to compute these weights (explaining the resemblance between equation (3.14) and 
(2.1)). 

Numerical experiments and implementation rules 
Conditional expectations are of great importance for calibration. For example, we may need to compute 
the overall volatility knowing the final value. Conditional expectations shall also change the 
understanding of Monte Carlo method. Usually, Monte Carlo methods are thought to be forward looking5. 
One gives an initial point and diffuses the underlying. Standing on the other extreme, PDEs methods are 
thought to be backward looking. One gives a final point and propagates bacwards. This allows computing 
American and Bermudean option with the second method while path dependent forward looking products 
for the first one. But if one knows how to express any conditional expectation where the condition is that 
the underlying price is equal to a given value at a given time, one can also do some backward looking 
computation with Monte Carlo. This shows that the overall accepted separation between Monte Carlo and 
PDEs methods is too simplistic and misses some recent development (see Fournié et al (2001), Lions and 
Régnier (2001) for a deeper discussion on this). 
 
Let us take again the Heston model described by (2.10) and (2.11). We are interested in computing the 
conditional instantaneous volatility 

[ ]SSE TT =|2σ      (3.15). 
The reasoning of the previous section has to be slightly modified. The underlying is denoted by 

tt SX = , while the volatility tσ  itself can be seen as a stochastic function of tX  and a stochastic 

component. In this case, ( ) 2
TtXF σ= , while ( ) SSXG TT −=  

 
In order to simplify the computation of the Skorohod integral, we will assume zero correlation between 
the underlying and its stochastic volatility. We can easily apply the calculation of the previous paragraph. 

First, because of the independence of 1
tW  and 2

tW , we conclude that 01 =TsD σ 6 and therefore 

( ) 01 =Ts XFD , so that the orthogonality condition (2.7) holds for any weight. Moreover, using the 
relationship between the M. derivatives and its first variation process (A.6), we get that the condition 

(3.5) is equal to 1
0

=







∫
T

t
t

T
tt dtu

Y
YSE σ . An easy solution is given for 

Tt
t ST

u
σ

1= , leading to the 

following weight 

T

T

t

t

T

T

Tt

Tt
T

t

t

TTt S
dW

TSS
SD

T
dW

TSST
11111

0

1

0
2

1

0

1
1 +=+=








∂ ∫∫∫ σσσσ

     (3.16), 

where we have used the rule for the Skorohod integral of a product (A.5), with 
t

u
σΤ

= 1
and 

TS
F 1= . 

We have finally the following formula 

 
5 Even if there has been some recent development for American Monte Carlo 
6 1

sD  (respectively 2
sD ) denotes the M. derivatives with respect to the filtration spanned by Brownian 

motion 1
tW  (resp. 2

tW ). Similarly, 1∂  denotes the Skorohod integral with respect to the filtration 

spanned by Brownian motion 1
tW . 
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[ ]
( )

( )























+−
























+−

==

∫

∫

T

t

t
T

T

T

t

t
T

T

T

TT
dW

T
SSH

S
E

dW
T

SSH
S

E

SSE

0

1

0

12

2

11.1

11.

|

σ

σ
σ

σ   (3.17). 

The numerical experiment has been to compute the conditional expectation given by formula (3.17) for 
1000 =S , %5=r , %1=λ %300 =σ , %25.2=θ , %5=v . We have displayed for T =0 to 6 

months and for value of the spot between 65min =S  and 135max =S . Obviously, we get the 
characteristic U shape of Heston model with zero correlation. 
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Figure 3: Example of Conditional expectation computed via Malliavin calculus. In this case,  

We computed in a Heston model the conditional volatility [ ]SSE TT =|2σ  

4. Conclusion 
In this paper, we have shown that there exist various tricks to enhance the performance of general pricing 
Monte Carlo. Using appropriate expression of the expectation to simulate is crucial for fast and accurate 
result. We have explained how to use Malliavin calculus to explicitly do some integration by parts when 
not knowing the density function of the underlying diffusion. We have applied this to two main 
applications: computation of the Greeks and of conditional expectations. 
We believe that this is a very promising area of research and will progressively change the understanding 
of Monte Carlo methods as it paves the path for very generic forward/backward Monte Carlo, following 
the recent trend of improvement of American Monte Carlo. 

Appendix: a primer on Malliavin calculus 
The objective of this short primer is to give an intuitive presentation of Malliavin calculus. For a more 
rigorous and detailed explanation, we refer the reader to the exhaustive book of Nualart (1995). 
Malliavin calculus is a synonym of calculus of variation of stochastic processes. Even if its original 
motivation was to provide a probabilistic proof of the existence and smoothness of solutions of particular 
PDEs (the of Hormander's sum of squares theorem), M. calculus has turned out to be a very powerful tool 
for giving other representation of stochastic processes, allowing to prove certain properties of stochastic 
processes (especially smoothness conditions).  Because the Brownian motion is not differentiable in the 
traditional sense, M. calculus defines a derivative, using a local perturbation on the Brownian motion and 
more generally on a martingale process. It measures in a sense the impact of bumping locally the 
Brownian path. Let us take a function of the Brownian motion ( ) 0≥ttW , ( )tWFtF →: . Let us bump 
the Brownian motion only locally at a time s. In mathematical terms, the perturbed Brownian motion is 
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the superposition of the original Brownian motion and a Kronecker function of total measure ε : 

stW εδ+ , where ( ) { }uss u ==1δ .  The M. derivative is defined intuitively as 

( ) ( )
ε

εδ
ε

tst
s

WFWFtFD −+
→

→0
lim:    (A.1), 

where the limit can usually be interpreted as a.s. This trivially leads to the M. derivative of a Brownian 
motion given by the indicative function: { }tstsWD ≤=1  
The interest of the M. calculus is to satisfy usual derivation rules: 
•  Chain rule for compound function, ( ) ( )( )tt WFWFGt 21 ,: →Φ  

∑ ∂
∂=Φ

i
is

i
s FDG

x
D .     (A.2). 

•  Integration by parts, (or duality between the M. derivative and the Skorohod integral).  

[ ] ( )[ ]uFEFudsDE s ∂=∫     (A.3). 

where ( )u∂  is called the Skorohod integral. This relation is the cornerstone formula as it enables to 
smoothen the function inside the expectation. Intuitively, the Skorohod integral could be compared to the 

divergence operator7 (up to the minus sign) as for deterministic function on ( )nnR λ, , we have 

( )∫∫ −=∇
nn

n

R

n

R

n
R

ddivufduf λλ, . 

•  Skorohod integration: for adapted processes, the Skorohod integral coincides with the Ito integral 

( ) ∫=∂ tudWu     (A.4). 

 Moreover, the Skorohod integral satisfies some interesting properties 

( ) ( ) ∫−∂=∂ FudtDuFFu t     (A.5). 

•  M. derivatives of a jump-diffusion: Let ( ) 0≥ttX  defined by its jump-diffusion equation: 

 ( ) ( ) ( ) ttttt dJtdWXtdtXtbdXX λσ ++= ,,:  with initial condition xX =0  

And let us define its first variation process (also called the tangential process) ( ) 0≥ttY  defined as 

tt X
x

Y
∂
∂= , obviously 10 =Y  and 

( ) ( ) tttttt dWYXt
x

dtYXtb
x

dYY ,,: σ
∂
∂+

∂
∂=     

The M. Derivatives of ( ) 0≥ttX  is then given by 

( ) { }tsststs YYXsXD ≤
−= 1, 1σ     (A.6). 

Also note that the M. derivative satisfies standard rule of derivation, namely for a product, we have 
( ) GDFGFDFGD ttt .. +=        

(A.7). 
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