Square-Root Finding Problem In Graphs, A Complete Dichotomy Theorem [article]

Babak Farzad, Majid Karimi
2012 arXiv   pre-print
Graph G is the square of graph H if two vertices x,y have an edge in G if and only if x,y are of distance at most two in H. Given H it is easy to compute its square H^2. Determining if a given graph G is the square of some graph is not easy in general. Motwani and Sudan proved that it is NP-complete to determine if a given graph G is the square of some graph. The graph introduced in their reduction is a graph that contains many triangles and is relatively dense. Farzad et al. proved the
more » ... eteness for finding a square root for girth 4 while they gave a polynomial time algorithm for computing a square root of girth at least six. Adamaszek and Adamaszek proved that if a graph has a square root of girth six then this square root is unique up to isomorphism. In this paper we consider the characterization and recognition problem of graphs that are square of graphs of girth at least five. We introduce a family of graphs with exponentially many non-isomorphic square roots, and as the main result of this paper we prove that the square root finding problem is NP-complete for square roots of girth five. This proof is providing the complete dichotomy theorem for square root problem in terms of the girth of the square roots.
arXiv:1210.7684v1 fatcat:75g3etssonfa5e3gpqgl4itqna