Covariant Relativistic Non-Equilibrium Thermodynamics of Multi-Component Systems

Wolfgang Muschik, Technische Universität Berlin, Technische Universität Berlin
<span title="2020-01-07">2020</span>
Non-equilibrium and equilibrium thermodynamics of an interacting component in a relativistic multi-component system is discussed covariantly by exploiting an entropy identity. The special case of the corresponding free component is considered. Equilibrium conditions and especially the multi-component Killing relation of the 4-temperature are discussed. Two axioms characterize the mixture: additivity of the energy momentum tensors and additivity of the 4-entropies of the components generating
more &raquo; ... se of the mixture. The resulting quantities of a single component and of the mixture as a whole, energy, energy flux, momentum flux, stress tensor, entropy, entropy flux, supply and production are derived. Finally, a general relativistic 2-component mixture is discussed with respect to their gravitation generating energy–momentum tensors.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="">doi:10.14279/depositonce-9498</a> <a target="_blank" rel="external noopener" href="">fatcat:jacbhzcnkfcidfziql5mwou3wm</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href=""> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> Publisher / </button> </a>