Broadband spectral fitting of blazars using XSPEC
Sunder Sahayanathan, Atreyee Sinha, Ranjeev Misra
2018
Research in Astronomy and Astrophysics
The broadband spectral energy distribution(SED) of blazars is generally interpreted as radiation arising from synchrotron and inverse Compton mechanisms.Traditionally, the underlying source parameters responsible for these emission processes,like particle energy density, magnetic field, etc., are obtained through simple visual reproduction of the observed fluxes. However, this procedure is incapable of providing the confidence range on the estimated parameters. In this work, we propose an
more »
... ent algorithm to perform a statistical fit of the observed broadband spectrum of blazars using different emission models. Moreover, in this work we use the the observable quantities as the fit parameters, rather than the direct source parameters which govern the resultant SED. This significantly improves the convergence time and eliminates the uncertainty regarding the initial guess parameters. This approach also has an added advantage of identifying the degenerate parameters, which can be removed by including more observable information and/or additional constraints. A computer code developed based on this algorithm is implemented as an user-defined routine in the standard X-ray spectral fitting package, XSPEC. Further, we demonstrate the efficacy of the algorithm by fitting the well sampled SED of the blazar, 3C 279, during its gamma ray flare in 2014.
doi:10.1088/1674-4527/18/3/35
fatcat:c3ib6zuk5ncptkgljfs57c4bkm