A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is `application/pdf`

.

##
###
Projective lattices of tiled orders

Проективнi гратки черепичних порядкiв

2018
*
Vìsnik Kiïvsʹkogo nacìonalʹnogo unìversitetu ìmenì Tarasa Ševčenka. Serìâ Fìziko-matematičnì nauki
*

Проективнi гратки черепичних порядкiв

Tiled orders over discrete valuation ring have been studied since the 1970s by many mathematicians, in particular, by Yategaonkar V.A., Tarsy R.B., Roggenkamp K.W, Simson D., Drozd Y.A., Zavadsky A.G. and Kirichenko V.V. Yategaonkar V.A. proved that for every n > 2, there is, up to an isomorphism, a finite number of tiled orders over a discrete valuation ring O of finite global dimension which lie in $M_n(K)$ where K is a field of fractions of a commutatively discrete valuation ring O. The

doi:10.17721/1812-5409.2018/4.2
fatcat:cy7wkhel5fff5pktf3mp4qvh6q